Page 68 - 《精细化工》2020年第4期
P. 68
第 37 卷第 4 期 精 细 化 工 Vol.37, No.4
202 0 年 4 月 FINE CHEMICALS Apr. 2020
功能材料
g-C N /CQDs 光催化材料的制备及性能
3
4
1
1*
1
1
2
1
1
周 进 ,丁 玲 ,张 婷 ,贺 欢 ,李文兵 ,刘 义 ,李享成
(1. 武汉科技大学 化学与化工学院 煤转化与新型炭材料湖北省重点实验室,湖北 武汉 430081;2. 武
汉科技大学 材料与冶金学院 省部共建耐火材料与冶金国家重点实验室,湖北 武汉 430081)
摘要:采用高温热解法制备了石墨相氮化碳(g-C 3 N 4 ),将其与碳量子点(CQDs)进行水热复合,得到 g-C 3 N 4 /CQDs
复合光催化剂。采用 SEM、TEM、FTIR、XRD、UV-Vis/DRS、XPS、N 2 吸附-脱附等温线手段对制备的复合光
催化剂进行了表征,以罗丹明 B(Rh B)为模拟污染物,考察了 g-C 3 N 4 /CQDs 的可见光催化活性及稳定性。结
果表明:与 g-C 3 N 4 相比,g-C 3 N 4 /CQDs 对可见光吸收强度增加,同时其吸收波长向可见光区发生红移;当 CQDs
含量为 1.5%(以 g-C 3 N 4 质量为基准)时,所得 g-C 3 N 4 /CQDs 光催化材料的催化活性最佳,其对 Rh B 的光催化
2
降解率是 54.5%,是 g-C 3 N 4 光催化降解率的 1.38 倍,化学反应动力学拟合相关系数 R =0.9982。且 g-C 3 N 4 /CQDs
+
2–
循环使用 3 次后,其催化降解率仍保持在 50%以上。光催化机理研究表明,空穴(h )、超氧阴离子自由基(•O )、
过氧化氢分子(H 2 O 2 )和羟基自由基(•OH)都是光催化过程中的主要活性物种,四者氧化作用大小依次为:
+
2–
h > •O > H 2 O 2 > •OH。
关键词:g-C 3 N 4 /CQDs;光催化材料;光催化性能;罗丹明 B
中图分类号:X703;O643.36 文献标识码:A 文章编号:1003-5214 (2020) 04-0702-08
Preparation and properties of g-C 3N 4/CQDs photocatalytic materials
1
1
1
2
1*
1
1
ZHOU Jin , DING Ling , ZHANG Ting , HE Huan , LI Wenbing , LIU Yi , LI Xiangcheng
(1. Hubei Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical
Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; 2. The State Key Laboratory
of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology,
Wuhan 430081, Hubei, China)
Abstract: Graphite-like carbon nitride (g-C 3N 4) was prepared by high-temperature pyrolyzation method,
and then composited with carbon quantum dots CQDs by hydrothermal method to produce a series of
g-C 3N 4/CQDs photo-catalysts. The as-prepared samples were characterized by SEM, TEM, FTIR, XRD,
UV-Vis/DRS, XPS and N 2 adsorption-desorption techniques. The photocatalytic activity and stability of
g-C 3N 4/CQDs were studied with rhodamine B (Rh B) as a simulated pollutant under visible light. The
results showed that the absorption intensity of g-C 3N 4/CQDs increased compared with that of g-C 3N 4.
Moreover, its absorption wavelength shifted red to the visible region. When the content of CQDs in
composite was 1.5% (based on the mass of g-C 3N 4), the obtained g-C 3N 4/CQDs photocatalyst had the best
catalytic activity. The photocatalytic degradation rate of Rh B by the g-C 3N 4/CQDs was 54.5%, which was
1.38 times higher than that of pure g-C 3N 4. The correlation coefficient of chemical reaction kinetics was
2
R =0.9982. Even after being recycled for 3 times, its catalytic degradation rate for Rh B remained above
+
50%. The photocatalytic mechanism of Rh B by the g-C 3N 4/CQDs revealed that holes (h ), superoxide
2–
anion radical (•O ), hydrogen peroxide (H 2O 2), and hydroxyl radical (•OH) were the main active species in
2–
+
the photocatalytic process. The order of oxidation of the four species from strong to weak was: h > •O >
H 2O 2 > •OH.
Key words: g-C 3N 4/CQDs; photocatalytic materials; photocatalytic properties; rhodamine B
收稿日期:2019-11-18; 定用日期:2020-01-14; DOI: 10.13550/j.jxhg.20191087
基金项目:国家自然科学基金(51972242);湖北省自然科学基金(2017CFB680);武汉科技大学省部共建耐火材料与冶金国家重点
实验室基金(G201703);湖北教育厅科学技术研究计划项目(B2017001)
作者简介:周 进(1993—),男,硕士生,E-mail:1531623420@qq.com。联系人:丁 玲(1976—),女,副教授, E-mail:
dingling@wust.edu.cn。