Page 200 - 《精细化工》2020年第5期
P. 200
·1050· 精细化工 FINE CHEMICALS 第 37 卷
聚合物减阻剂的减阻性能,扭矩越低减阻性能越好。 [8] CUI Q (崔强), ZHANG J G (张金功), XUE T (薛涛). Synthesis and
将未添加减阻剂时的扭矩值 0.100 N 与扭矩最低点 rheological properties of hydrophobic associated polymer as drag
reducing agent[J]. Fine Chemicals (精细化工), 2018, 35(1): 149-157.
的数值一同代入公式(1)可以计算出 4 种不同侧链 [9] BROSTOW W. Drag reduction in flow: Review of applications,
长度的聚合物减阻剂的减阻率分别为:聚己烯 9%、 mechanism and prediction[J]. Journal of Industrial & Engineering
Chemistry, 2008, 14(4): 409-416.
聚辛烯 14%、聚癸烯 15%、聚十二烯 16%。随着聚
[10] ASIDIN M A, SUALI E, JUSNUKIN T, et al. Review on the
烯烃侧链长度的增加,减阻率呈现升高的趋势,其 applications and developments of drag reducing polymer in turbulent
中聚十二烯的减阻率可以达到 16%左右。4 种不同 pipe flow[J]. Chinese Journal of Chemical Engineering, 2019, 27(8):
1921-1932.
侧链长度的聚合物减阻剂减阻率均高于 HG 减阻
[11] JUBRAN B A, ZURIGAT Y H, GOOSEN A M F A. Drag reducing
剂,减阻性能优异。 agents in multiphase flow pipelines: Recent trends and future
needs[J]. Petroleum Science and Technology, 2005, 23(11/12):
3 结论 1403-1424.
[12] AHMADIO S. Preparation of ultra high molecular weight amorphous
(1)在反应压力为常压、反应温度为 0 ℃的条 poly(1-hexene) by a Ziegler-Natta catalyst[J]. Polymers for Advanced
Technologies, 2016, 27(11): 1523-1529.
件下,通过对聚合反应条件的探讨,获得了最佳反 [13] XU Z P (徐志鹏), GAO M Z (高明智), LIU M C (刘明超), et al.
–4
应条件:主催化剂 TiCl 4 浓度为 5.2×10 mol/L、聚 Preparation of super-high relative molecular weight poly(1-octene)
with Ziegler-Natta catalyst[J]. Petrochemical Technology (石油化工),
合反应溶剂为环己烷、溶剂用量为 20 mL。由转化
2018, 47(6): 38-42.
率与时间曲线可知,反应 1440 min 后,聚合单体基 [14] MA Y H (马艳红), LU J Y (陆江银), ZHU G D (朱桂丹), et al.
本完全反应。 Preparation and performance of the copolymer of 1-pentene and
dodecene as drag reducing agent[J]. Modern Chemical Industry (现
(2)聚合物在常温使用条件下不分解,耐热性
代化工), 2017, 37(3): 84-87, 89.
良好,随着聚合单体侧链长度的增加玻璃化转变温 [15] KIM C A, JO D S, CHOI H J, et al. A high-precision rotating disk
度先降低后升高,聚合物的熔点呈现升高的趋势。 apparatus for drag reduction characterization[J]. Polymer Testing,
2000, 20(1): 43-48.
在保证较高减阻率的条件下,选用聚辛烯可以有效
[16] DAI X D (代晓东), LI B (李冰), YIN S M (印树明), et al. Drag
避免侧链结晶,提高溶解性。 reduction and mechanical degradation properties of PEO using a
(3)随着聚合物的侧链长度由 4 个碳增加至 10 rotating disk apparatus[J]. Science Technology and Engineering (科学
技术与工程), 2017, 17(27): 184-189.
个碳,减阻率呈现升高的趋势,最高减阻率为 16%。
[17] KIM C A, CHOI H J, SUNG J H, et al. Effect of solubility parameter
本工作对工业化聚烯烃减阻剂的单体选择及制 of polymer-solvent pair on turbulent drag reduction[J]. Macromolecular
备工艺有一定的指导作用。 Symposia, 2005, 222(1): 169-174.
[18] KIM C B, YANG K S, CHOI H J, et al. Drag reducing effects of
参考文献: polymer additives on coal-water mixture in rotating disk system[J].
Journal of Mechanical Science and Technology, 1993, 7(1): 48-54.
[1] QI Y J (齐艳杰), LU J Y (陆江银), WANG C X (王春晓). The [19] ZHOU C Y (周春艳), LI H P (李惠萍), HU Z Z (胡子昭), et al.
progress of polymer drag reducer[J]. Journal of Xinjiang University Applications of computer simulation in the synthesis of poly-alpha-
(Natural Science Edition) (新疆大学学报: 自然科学版), 2013, (1): olefins drag reducing agents[J]. Modern Chemical Industry (现代化
79-84.
工), 2017, 37(6): 193-196.
[2] NIFANT’EV I E, SHLYAKHTIN A V, TAVTORKIN A N, et al. The [20] NAYERI H H, TAROMI F A, HEMMATI M, et al. Preparation
synthesis of ultra-high molecular weight poly(1-hexene)s by method of superactive Ziegler–Natta catalysts to produce ultra-high
low-temperature Ziegler-Natta precipitation polymerization in
molecular weight amorphous poly(1-octene), poly(1-decene), and
fluorous reaction media[J]. Polymer, 2018, 139: 98-106. their copolymers[J]. Journal of Coordination Chemistry, 2014,
[3] NAKAMURA K, ODAJIMA S, KIZAWA K, et al. Drag-reducing 67(19): 3270-3278.
effect in solutions of very high molecular weight polystyrene by the
[21] WANG J S, PORTER R S, KNOX J R. Physical properties of the
rolling ball method[J]. Polymer Journal, 1988, 20(2): 169-173.
[4] LI G P (李国平), YANG R (杨睿), WANG K H (汪昆华). The new poly(1-olefin)s. Rhermal behavior and dilute solution properties[J].
progress of drag reducer in research and production at home and Polymer Journal, 1978, 10(6): 619-628.
[22] SHIRBAKHT S, MIRMOHAMMADI S A, DIDEHBAN K, et al.
abroad[J]. Oil & Gas Storage and Transportation (油气储运), 2000,
19(1): 3-7 Effects of monomer length on α-olefins polymerization using a
[5] L'VOV V S, POMYALOV A, PROCACCIA I, et al. Drag reduction conventional Ziegler-Natta catalyst[J]. Advances in Polymer
Technology, 2018, 37(7): 2588-2596.
by polymers in wall bounded turbulence[J]. Physical Review Letters,
2004, 92(24): 244503. [23] KOVAL N V, IVANYUK A V, SHKLYARUK B F, et al. Polymer
[6] TAO L L (陶亮亮), HU R (胡瑞), MA X (马雄), et al. Application compositions based on polyethylene and poly(1-hexene)[J]. Polymer
and development trends of the DRA in oil and gas pipelines[J]. Science Series B, 2007, 49(9/10): 253-255.
Petrochemical Industry Application (石油化工应用), 2011, 30(4): [24] FISCHLSCHWEIGER M, ENDERS S. A theory for solubility of
8-12. semicrystalline and branched polymers in one solvent[J].
[7] LI Y F (李永飞), WANG Y L (王彦玲), CAO X C (曹勋臣), et al. Macromolecules, 2014, 47(21): 7625-7636.
Progress in research and application of drag reducer for shale [25] VAN KREVELEN D W, TE NIJENHUIS K. Properties of
reservoir fracturing[J]. Fine Chemicals (精细化工), 2018, 35(1): 1-9. polymers[M]. 4th ed. Amsterdam, Elsevier, 2009: 219-220.