Page 200 - 《精细化工》2020年第5期
P. 200

·1050·                            精细化工   FINE CHEMICALS                                 第 37 卷

            聚合物减阻剂的减阻性能,扭矩越低减阻性能越好。                            [8]   CUI Q (崔强), ZHANG J G (张金功), XUE T (薛涛). Synthesis and
            将未添加减阻剂时的扭矩值 0.100  N 与扭矩最低点                           rheological  properties  of  hydrophobic  associated  polymer  as  drag
                                                                   reducing agent[J]. Fine Chemicals (精细化工), 2018, 35(1): 149-157.
            的数值一同代入公式(1)可以计算出 4 种不同侧链                          [9]   BROSTOW  W.  Drag  reduction  in  flow:  Review  of  applications,
            长度的聚合物减阻剂的减阻率分别为:聚己烯 9%、                               mechanism  and  prediction[J].  Journal  of  Industrial  &  Engineering
                                                                   Chemistry, 2008, 14(4): 409-416.
            聚辛烯 14%、聚癸烯 15%、聚十二烯 16%。随着聚
                                                               [10]  ASIDIN  M  A,  SUALI  E,  JUSNUKIN  T,  et al.  Review  on  the
            烯烃侧链长度的增加,减阻率呈现升高的趋势,其                                 applications and developments of drag reducing polymer in turbulent
            中聚十二烯的减阻率可以达到 16%左右。4 种不同                              pipe flow[J]. Chinese Journal of Chemical Engineering, 2019, 27(8):
                                                                   1921-1932.
            侧链长度的聚合物减阻剂减阻率均高于 HG 减阻
                                                               [11]  JUBRAN B A, ZURIGAT Y H, GOOSEN A M F A. Drag reducing
            剂,减阻性能优异。                                              agents  in  multiphase  flow  pipelines:  Recent  trends  and  future
                                                                   needs[J].  Petroleum  Science  and  Technology,  2005,  23(11/12):
            3   结论                                                 1403-1424.
                                                               [12]  AHMADIO S. Preparation of ultra high molecular weight amorphous
                (1)在反应压力为常压、反应温度为 0  ℃的条                           poly(1-hexene) by a Ziegler-Natta catalyst[J]. Polymers for Advanced
                                                                   Technologies, 2016, 27(11): 1523-1529.
            件下,通过对聚合反应条件的探讨,获得了最佳反                             [13]  XU Z P (徐志鹏), GAO M Z (高明智), LIU M C (刘明超), et al.
                                               –4
            应条件:主催化剂 TiCl 4 浓度为 5.2×10  mol/L、聚                    Preparation  of  super-high  relative  molecular  weight  poly(1-octene)
                                                                   with  Ziegler-Natta  catalyst[J].  Petrochemical  Technology  (石油化工),
            合反应溶剂为环己烷、溶剂用量为 20  mL。由转化
                                                                   2018, 47(6): 38-42.
            率与时间曲线可知,反应 1440 min 后,聚合单体基                       [14]  MA  Y  H  (马艳红),  LU  J  Y  (陆江银), ZHU G D (朱桂丹),  et al.
            本完全反应。                                                 Preparation  and  performance  of  the  copolymer  of  1-pentene  and
                                                                   dodecene as drag reducing agent[J]. Modern Chemical Industry (现
                (2)聚合物在常温使用条件下不分解,耐热性
                                                                   代化工), 2017, 37(3): 84-87, 89.
            良好,随着聚合单体侧链长度的增加玻璃化转变温                             [15]  KIM C A, JO D S, CHOI H J, et al. A high-precision rotating disk
            度先降低后升高,聚合物的熔点呈现升高的趋势。                                 apparatus  for  drag  reduction  characterization[J].  Polymer  Testing,
                                                                   2000, 20(1): 43-48.
            在保证较高减阻率的条件下,选用聚辛烯可以有效
                                                               [16]  DAI X D (代晓东),  LI  B  (李冰),  YIN S M (印树明),  et al.  Drag
            避免侧链结晶,提高溶解性。                                          reduction  and  mechanical  degradation  properties  of  PEO  using  a
                (3)随着聚合物的侧链长度由 4 个碳增加至 10                          rotating disk apparatus[J]. Science Technology and Engineering (科学
                                                                   技术与工程), 2017, 17(27): 184-189.
            个碳,减阻率呈现升高的趋势,最高减阻率为 16%。
                                                               [17]  KIM C A, CHOI H J, SUNG J H, et al. Effect of solubility parameter
                 本工作对工业化聚烯烃减阻剂的单体选择及制                              of polymer-solvent pair on turbulent drag reduction[J]. Macromolecular
            备工艺有一定的指导作用。                                           Symposia, 2005, 222(1): 169-174.
                                                               [18]  KIM C  B, YANG  K S, CHOI H J,  et al. Drag reducing effects of
            参考文献:                                                  polymer additives on coal-water mixture in rotating disk system[J].
                                                                   Journal of Mechanical Science and Technology, 1993, 7(1): 48-54.
            [1]   QI Y J (齐艳杰),  LU  J  Y  (陆江银),  WANG  C  X  (王春晓).  The   [19]  ZHOU  C  Y  (周春艳),  LI  H  P  (李惠萍),  HU  Z  Z  (胡子昭),  et al.
                 progress of polymer drag reducer[J]. Journal of Xinjiang University   Applications of computer simulation in the synthesis of poly-alpha-
                 (Natural Science Edition) (新疆大学学报:  自然科学版), 2013, (1):   olefins drag reducing agents[J]. Modern Chemical Industry (现代化
                 79-84.
                                                                   工), 2017, 37(6): 193-196.
            [2]   NIFANT’EV I E, SHLYAKHTIN A V, TAVTORKIN A N, et al. The   [20]  NAYERI  H  H,  TAROMI  F  A,  HEMMATI  M,  et al.  Preparation
                 synthesis  of  ultra-high  molecular  weight  poly(1-hexene)s  by   method of superactive Ziegler–Natta catalysts to produce ultra-high
                 low-temperature  Ziegler-Natta  precipitation  polymerization  in
                                                                   molecular  weight  amorphous  poly(1-octene),  poly(1-decene),  and
                 fluorous reaction media[J]. Polymer, 2018, 139: 98-106.     their  copolymers[J].  Journal  of  Coordination  Chemistry,  2014,
            [3]   NAKAMURA  K,  ODAJIMA  S,  KIZAWA  K,  et al.  Drag-reducing   67(19): 3270-3278.
                 effect in solutions of very high molecular weight polystyrene by the
                                                               [21]  WANG  J  S,  PORTER  R  S,  KNOX  J  R.  Physical  properties  of  the
                 rolling ball method[J]. Polymer Journal, 1988, 20(2): 169-173.
            [4]   LI G P (李国平), YANG R (杨睿), WANG K H (汪昆华). The new   poly(1-olefin)s.  Rhermal  behavior  and  dilute  solution  properties[J].
                 progress  of  drag  reducer  in  research  and  production  at  home  and   Polymer Journal, 1978, 10(6): 619-628.
                                                               [22]  SHIRBAKHT  S,  MIRMOHAMMADI  S  A,  DIDEHBAN  K,  et al.
                 abroad[J]. Oil & Gas Storage and Transportation (油气储运), 2000,
                 19(1): 3-7                                        Effects  of  monomer  length  on  α-olefins  polymerization  using  a
            [5]   L'VOV V S, POMYALOV A, PROCACCIA I, et al. Drag reduction   conventional  Ziegler-Natta  catalyst[J].  Advances  in  Polymer
                                                                   Technology, 2018, 37(7): 2588-2596.
                 by polymers in wall bounded turbulence[J]. Physical Review Letters,
                 2004, 92(24): 244503.                         [23]  KOVAL  N  V,  IVANYUK  A  V,  SHKLYARUK  B  F,  et al.  Polymer
            [6]   TAO L L (陶亮亮), HU R (胡瑞), MA X (马雄), et al. Application   compositions based on polyethylene and poly(1-hexene)[J]. Polymer
                 and  development  trends  of  the  DRA  in  oil  and  gas  pipelines[J].   Science Series B, 2007, 49(9/10): 253-255.
                 Petrochemical  Industry  Application  (石油化工应用),  2011,  30(4):   [24]  FISCHLSCHWEIGER  M,  ENDERS  S.  A  theory  for  solubility  of
                 8-12.                                             semicrystalline  and  branched  polymers  in  one  solvent[J].
            [7]   LI Y F (李永飞), WANG Y L (王彦玲), CAO X C (曹勋臣), et al.   Macromolecules, 2014, 47(21): 7625-7636.
                 Progress  in  research  and  application  of  drag  reducer  for  shale   [25]  VAN  KREVELEN  D  W,  TE  NIJENHUIS  K.  Properties  of
                 reservoir fracturing[J]. Fine Chemicals (精细化工), 2018, 35(1): 1-9.     polymers[M]. 4th ed. Amsterdam, Elsevier, 2009: 219-220.
   195   196   197   198   199   200   201   202   203   204   205