Page 68 - 《精细化工》2020年第5期
P. 68
·918· 精细化工 FINE CHEMICALS 第 37 卷
(1)采用 FTIR、SEM、XPS 对原布改性前后 superhydrophobic latex pigments[J]. ACS Applied Materials &
的结构进行了表征,结果表明,VPDMS、VPOSS Interfaces, 2019, 11(29): 1-31.
[8] WANG H X, XUE Y H, DING J, et al. Durable, self-healing
和巯基单体被成功接枝到棉纤维表面。 superhydrophobic and superoleophobic surfaces from fluorinated-
(2)原布表面接枝 MVPDMS 10% 进行改性时接 decyl polyhedral oligomeric silsesquioxane and hydrolyzed
fluorinated alkyl silane[J]. Angewandte Chemie, 2011, 50(48):
触角可达到 144°;将 MVPDMS 10% 和 VPOSS 共聚改 11433-11436.
性,接触角提高到 153°;经巯基单体二次改性的棉 [9] CELIA E, DARMANIM T, ELISABETH T, et al. Recent advances in
布,具有更高的疏水性,其接触角最高可达到 164°。 designing superhydrophobic surfaces[J]. Journal of Colloid and Inter-
face Science, 2013, 402: 1-18.
(3)经磨耗实验、耐水洗实验和耐酸实验考察, [10] ZHOU X Y, ZHANG Z Z, XU X H, et al. Robust and durable
发现 PFDCMC 二次处理的棉布疏水性能最优,且具 superhydrophobic cotton fabrics for oil/water separation[J]. ACS
Applied Materials & Interfaces, 2013, 5(15): 7208-7214.
有自修复特性。
[11] SHANGGUAN Wenchao (上官文超), AN Qiufeng (安秋凤), LÜ
(4)改性棉布符合穿戴用棉布安全环保、耐久 Zhuyun (吕竹筠), et al. Synthesis and application of transparent
性强的要求,应用前景良好。 water-repellent and wear resistant coating[J]. Fine Chemicals (精细
化工), 2018, 35(3): 377-382.
参考文献: [12] WANG Z J, WANG Y, LIU G J. Rapid and efficient separation of oil
from oil-in-water emulsions using a janus cotton fabric[J].
[1] XU Lihui (徐丽慧), SHEN Yong (沈勇), WANG Liming (王黎明), Angewandte Chemie International Edition, 2016, 55(4): 1291-1294.
et al. Research and development of modern functional textiles[J]. [13] WANG H X, DING J, XUE Y H, et al. Superhydrophobic fabrics
Journal of Shanghai University of Engineering Science (上海工程技 from hybrid silica sol-gel coatings: Structural effect of precursors on
术大学学报), 2018, 32(3): 214-220. wettability and washing durability[J]. Journal of Materials Research,
[2] QIN Yimin (秦益民), MO Lan (莫岚), ZHU Changjun (朱长俊), et al. 2010, 25(7): 1336-1343.
Progress in technologies for functional modifications of cotton fibers [14] WANG H X, DING J, DAI L M, et al. Directional water-transfer
[J]. Journal of Textile Research (纺织学报), 2015, 36(5): 153-157. through fabrics induced by asymmetric wettability[J]. Journal of
[3] SHEN L, QIU W L, WANG W, et al. Facile fabrication of Materials Chemistry, 2010, 20(37): 7938-7940.
superhydrophobic conductive graphite nanoplatelet/vapor-grown [15] PAN G G, XIAO X Y, YE Z H. Fabrication of stable
carbon fiber/ polypropylene composite coatings[J]. Composites superhydrophobic coating on fabric with mechanical durability, UV
Science and Technology, 2015, 117: 39-45. resistance and high oil-water separation efficiency[J]. Surface and
[4] CHEN J H, LIU Z H, WEN X F, et al. Two-step approach for Coatings Technology, 2019, 360: 318-328.
fabrication of durable superamphiphobic fabrics for self-cleaning, [16] YAN L, WANG Z K, YAN J J, et al. Selectively grafting polymer
antifouling, and on-demand oil/water separation[J]. Industrial & from the interior and/or exterior surfaces of bioreducible and
Engineering Chemistry Research, 2019, 58(14): 5490-5500. temperature- responsive nanocapsules[J]. Polym Chem, 2013, 4(4):
[5] XU B, CAI Z S. Fabrication of a superhydrophobic ZnO nanorod 1243-1249.
array film on cotton fabrics via a wet chemical route and [17] WANG L, XI G H, WAN S J, et al. Asymmetrically
hydrophobic modification[J]. Applied Surface Science, 2008, superhydrophobic cotton fabrics fabricated by mist polymerization of
254(18): 5899-5904. lauryl methacrylate[J]. Cellulose, 2014, 21(4): 2983-2994.
[6] FOORGINEHAD S, ZERAFAT M M. Fabrication of superhydro- [18] RIAZ S, ASHRAF M, HUSSAIN T, et al. Modification of silica
phobic coatings with self-cleaning properties on cotton fabric based nanoparticles to develop highly durable superhydrophobic and anti-
on octa vinyl polyhedral oligomeric silsesquioxane/polydimethylsilo- bacterial cotton fabrics[J]. Cellulose, 2019, 26(8): 5159-5175.
xane (OV-POSS/PDMS) nanocomposite[J]. Journal of Colloid and [19] LIU S, ZHOU H, WANG H X, et al. Argon plasma treatment of
Interface Science, 2019, 540: 78-87. fluorine-free silane coatings: a facile, environment-friendly method
[7] CHEN C, LIU M M, HOU Y Y, et al. Biomimetic polychrome to prepare durable, superhydrophobic fabrics[J]. Advanced Materials
rubberized fabric constructed by nonfluorinated multiscale hierarchical Interfaces, 2017, 4(11): 1-8.
(上接第 897 页) and wine[J]. Angewandte Chemie International Edition, 2013, 52(41):
10766-10770.
[14] JI J, FU J, SHEN J C. Fabrication of a superhydrophobic surface
[19] MORI T, REZAI-ZADEH K, KOYAMA N, et al. Tannic acid is a
from the amplified exponential growth of a multilayer[J]. Advanced
natural β-secretase inhibitor that prevents cognitive impairment and
Materials, 2006, 18(11): 1441-1444.
mitigates Alzheimer-like pathology in transgenic mice[J]. Journal of
[15] SHIBUICHI S, YAMAMOTO T, ONDA T, et al. Super water-and
Biological Chemistry, 2012, 287(9): 6912-6927.
oil-repellent surfaces resulting from fractal structure[J]. Journal of
[20] WANG J N, LI A M, XU L, et al. Adsorption of tannic and gallic
Colloid and Interface Science, 1998, 208(1): 287-294.
acids on a new polymeric adsorbent and the effect of Cu (II) on their
[16] GUO C, FENG L, ZHAI J, et al. Large-area fabrication of a nanostructure-
removal[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 794-800.
induced hydrophobic surface from a hydrophilic polymer[J].
[21] GAO Z, ZHAROV I. Large pore mesoporous silica nanoparticles by
ChemPhysChem, 2004, 5(5): 750-753.
[17] WU Y, BEKKE M, INOUE Y, et al. Mechanical durability of ultra- templating with a nonsurfactant molecule, tannic acid[J]. Chemistry
water-repellent thin film by microwave plasma-enhanced CVD[J]. of Materials, 2014, 26(6): 2030-2037.
Thin Solid Films, 2004, 457(1): 122-127. [22] NAKAJIMA A, HASHIMOTO K, WATANABE T. Recent studies on
[18] SILEIKA T S, BARRETT D G, ZHANG R, et al. Colorless super-hydrophobic films[M] Molecular Materials and Functional
multifunctional coatings inspired by polyphenols found in tea, chocolate, Polymers. Springer, Vienna, 2001: 31-41.