Page 68 - 《精细化工》2020年第5期
P. 68

·918·                             精细化工   FINE CHEMICALS                                 第 37 卷

                (1)采用 FTIR、SEM、XPS 对原布改性前后                         superhydrophobic  latex  pigments[J].  ACS  Applied  Materials  &
            的结构进行了表征,结果表明,VPDMS、VPOSS                              Interfaces, 2019, 11(29): 1-31.
                                                               [8]   WANG  H  X,  XUE  Y  H,  DING  J,  et al.  Durable,  self-healing
            和巯基单体被成功接枝到棉纤维表面。                                      superhydrophobic  and  superoleophobic  surfaces  from  fluorinated-
                (2)原布表面接枝 MVPDMS 10% 进行改性时接                        decyl  polyhedral  oligomeric  silsesquioxane  and  hydrolyzed
                                                                   fluorinated  alkyl  silane[J].  Angewandte  Chemie,  2011,  50(48):
            触角可达到 144°;将 MVPDMS 10% 和 VPOSS 共聚改                    11433-11436.
            性,接触角提高到 153°;经巯基单体二次改性的棉                          [9]   CELIA E, DARMANIM T, ELISABETH T, et al. Recent advances in
            布,具有更高的疏水性,其接触角最高可达到 164°。                             designing superhydrophobic surfaces[J]. Journal of Colloid and Inter-
                                                                   face Science, 2013, 402: 1-18.
                (3)经磨耗实验、耐水洗实验和耐酸实验考察,                         [10]  ZHOU  X  Y,  ZHANG  Z  Z,  XU  X  H,  et al.  Robust  and  durable
            发现 PFDCMC 二次处理的棉布疏水性能最优,且具                             superhydrophobic  cotton  fabrics  for  oil/water  separation[J].  ACS
                                                                   Applied Materials & Interfaces, 2013, 5(15): 7208-7214.
            有自修复特性。
                                                               [11]  SHANGGUAN  Wenchao  (上官文超),  AN  Qiufeng  (安秋凤),  LÜ
                (4)改性棉布符合穿戴用棉布安全环保、耐久                              Zhuyun  (吕竹筠),  et al.  Synthesis  and  application  of  transparent
            性强的要求,应用前景良好。                                          water-repellent and wear resistant coating[J]. Fine Chemicals (精细
                                                                   化工), 2018, 35(3): 377-382.
            参考文献:                                              [12]  WANG Z J, WANG Y, LIU G J. Rapid and efficient separation of oil
                                                                   from  oil-in-water  emulsions  using  a  janus  cotton  fabric[J].
            [1]   XU Lihui (徐丽慧), SHEN Yong (沈勇), WANG Liming (王黎明),   Angewandte Chemie International Edition, 2016, 55(4): 1291-1294.
                 et al.  Research  and  development  of  modern  functional  textiles[J].   [13]  WANG  H  X,  DING  J,  XUE  Y  H, et  al.  Superhydrophobic  fabrics
                 Journal of Shanghai University of Engineering Science (上海工程技  from hybrid silica sol-gel coatings: Structural effect of precursors on
                 术大学学报), 2018, 32(3): 214-220.                     wettability and washing durability[J]. Journal of Materials Research,
            [2]   QIN Yimin (秦益民), MO Lan (莫岚), ZHU Changjun (朱长俊), et al.   2010, 25(7): 1336-1343.
                 Progress in technologies for functional modifications of cotton fibers   [14]  WANG  H  X,  DING  J,  DAI  L  M,  et al.  Directional  water-transfer
                 [J]. Journal of Textile Research (纺织学报), 2015, 36(5): 153-157.   through  fabrics  induced  by  asymmetric  wettability[J].  Journal  of
            [3]   SHEN  L,  QIU  W  L,  WANG  W,  et al.  Facile  fabrication  of   Materials Chemistry, 2010, 20(37): 7938-7940.
                 superhydrophobic  conductive  graphite  nanoplatelet/vapor-grown   [15]  PAN  G  G,  XIAO  X  Y,  YE  Z  H.  Fabrication  of  stable
                 carbon  fiber/  polypropylene  composite  coatings[J].  Composites   superhydrophobic coating on fabric with mechanical durability, UV
                 Science and Technology, 2015, 117: 39-45.         resistance  and  high  oil-water  separation  efficiency[J].  Surface  and
            [4]   CHEN J H,  LIU  Z  H, WEN X F,  et al.  Two-step  approach  for   Coatings Technology, 2019, 360: 318-328.
                 fabrication  of  durable  superamphiphobic  fabrics  for  self-cleaning,   [16]  YAN L, WANG Z K, YAN J J, et al. Selectively grafting polymer
                 antifouling,  and  on-demand  oil/water  separation[J].  Industrial  &   from  the  interior  and/or  exterior  surfaces  of  bioreducible  and
                 Engineering Chemistry Research, 2019, 58(14): 5490-5500.   temperature-  responsive  nanocapsules[J].  Polym  Chem,  2013,  4(4):
            [5]   XU  B,  CAI  Z  S.  Fabrication  of  a  superhydrophobic  ZnO  nanorod   1243-1249.
                 array  film  on  cotton  fabrics  via  a  wet  chemical  route  and   [17]  WANG  L,  XI  G  H,  WAN  S  J, et al.  Asymmetrically
                 hydrophobic  modification[J].  Applied  Surface  Science,  2008,   superhydrophobic cotton fabrics fabricated by mist polymerization of
                 254(18): 5899-5904.                               lauryl methacrylate[J]. Cellulose, 2014, 21(4): 2983-2994.
            [6]   FOORGINEHAD  S,  ZERAFAT  M  M.  Fabrication  of  superhydro-  [18]  RIAZ  S,  ASHRAF  M,  HUSSAIN  T, et  al.  Modification  of  silica
                 phobic coatings with self-cleaning properties on cotton fabric based   nanoparticles to develop highly durable superhydrophobic and anti-
                 on octa vinyl polyhedral oligomeric silsesquioxane/polydimethylsilo-  bacterial cotton fabrics[J]. Cellulose, 2019, 26(8): 5159-5175.
                 xane  (OV-POSS/PDMS)  nanocomposite[J].  Journal  of  Colloid  and   [19]  LIU  S,  ZHOU  H,  WANG  H  X,  et al.  Argon  plasma  treatment  of
                 Interface Science, 2019, 540: 78-87.              fluorine-free  silane  coatings:  a  facile,  environment-friendly  method
            [7]   CHEN  C,  LIU  M  M,  HOU  Y  Y,  et al.  Biomimetic  polychrome   to prepare durable, superhydrophobic fabrics[J]. Advanced Materials
                 rubberized fabric constructed by nonfluorinated multiscale hierarchical     Interfaces, 2017, 4(11): 1-8.



            (上接第 897 页)                                            and wine[J]. Angewandte Chemie International Edition, 2013, 52(41):
                                                                   10766-10770.
            [14]  JI  J, FU  J, SHEN  J  C. Fabrication  of a superhydrophobic surface
                                                               [19]  MORI T,  REZAI-ZADEH  K,  KOYAMA N, et al.  Tannic acid is a
                 from  the  amplified  exponential  growth  of  a  multilayer[J].  Advanced
                                                                   natural β-secretase inhibitor that prevents cognitive impairment and
                 Materials, 2006, 18(11): 1441-1444.
                                                                   mitigates Alzheimer-like pathology in transgenic mice[J]. Journal of
            [15]  SHIBUICHI  S,  YAMAMOTO  T,  ONDA  T,  et al.  Super  water-and
                                                                   Biological Chemistry, 2012, 287(9): 6912-6927.
                 oil-repellent  surfaces  resulting  from  fractal  structure[J].  Journal  of
                                                               [20]  WANG J N, LI A M, XU L, et al. Adsorption of tannic and gallic
                 Colloid and Interface Science, 1998, 208(1): 287-294.
                                                                   acids on a new polymeric adsorbent and the effect of Cu (II) on their
            [16]  GUO C, FENG L, ZHAI J, et al. Large-area fabrication of a nanostructure-
                                                                   removal[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 794-800.
                 induced  hydrophobic  surface  from  a  hydrophilic  polymer[J].
                                                               [21]  GAO Z, ZHAROV I. Large pore mesoporous silica nanoparticles by
                 ChemPhysChem, 2004, 5(5): 750-753.
            [17]  WU Y, BEKKE M, INOUE Y, et al. Mechanical durability of ultra-   templating with a nonsurfactant molecule, tannic acid[J]. Chemistry
                 water-repellent  thin  film  by  microwave  plasma-enhanced  CVD[J].   of Materials, 2014, 26(6): 2030-2037.
                 Thin Solid Films, 2004, 457(1): 122-127.      [22]  NAKAJIMA A, HASHIMOTO K, WATANABE T. Recent studies on
            [18]  SILEIKA  T  S,  BARRETT  D  G,  ZHANG  R,  et al.  Colorless   super-hydrophobic  films[M]  Molecular  Materials  and  Functional
                 multifunctional coatings inspired by polyphenols found in tea, chocolate,   Polymers. Springer, Vienna, 2001: 31-41.
   63   64   65   66   67   68   69   70   71   72   73