Page 126 - 《精细化工》2020年第6期
P. 126
·1192· 精细化工 FINE CHEMICALS 第 37 卷
的电阻率为 1.22 Ω·m,传感系数为 45.64(拉伸应变 11(13): 5884-5890.
在 80%~120%);CB 的含量为 12.5%时,CB/PU 纳 [15] LI Z, ZHOU X, LIU Y H, et al. Highly sensitive, ultrastretchable
strain sensors prepared by pumping hybrid hillers of carbon
米纤维的电阻率为 0.14 Ω·m,传感系数为 167.43(拉
nanotubes/cellulose nanocrystal into electrospun polyurethane
伸应变在 80%~120%)。且 CNT/PU、CB/PU 纳米纤
membranes[J]. ACS Applied Material Interfaces, 2019, 11(13):
维均有可重复性的、稳定的应变传感性能,纤维的 12968-12977.
电阻率越小,导电聚氨酯纳米纤维的应变灵敏度 [16] ZHOU Y J, ZHAN P F, REN M N, et al. Significantstretchability
越高。 enhancement of a crack-based strain sensor combined with high
sensitivity and superior durability for motion monitoring[J]. ACS
参考文献: Applied Material Interfaces, 2019, 11(7): 7405-7414.
[17] WANG L X (王兰心), WANG B X (王冰新), SHEN M J (申玟静),
[1] YU G F (于桂凤). Fabrication of functionalized conducting polymer
et al. Response characteristics of flexible tensile sensing materials
fibers, physical characteristics and the potential applications in strain
based on nano conductive carbon black and carbon fiber[J]. Modern
sensor[D]. Qingdao: Qingdao University (青岛大学), 2016.
Chemical Industry (现代化工), 2018, 38(10): 154-157, 159.
[2] YAN T, WANG Z, PAN Z J, et al, Flexible strain sensors fabricated
[18] HUANG X (黄响). Study on electrical conductivity of polypropylene
using carbon-based nanomaterials: A review[J]. Current Opinion in
composite filled with modified carbon black[J]. Zhejiang Chemical
Solid State & Materials Science, 2018, 22(6): 213-228.
Industry (浙江化工), 2019, 50(4): 14-16,19.
[3] KANG I, SCHULZ M J, KIM J H, et al. A carbon nanotube strain
[19] BAI J J (白静静), SU H B (苏会博),LIU Z W (刘志伟). Preparation
sensor for structural health monitoring, smart materials and
and rheological properties of isocyanate functionalized carbon
structures[J]. 2006, 15(3): 737-748.
nanotubes/thermoplastic polyurethane elastomer composites[J].
[4] YAN T (闫涛), PAN Z J (潘志娟). Research status of flexible strain
Materials Review (材料导报), 2018, 32 (24): 4386-4391.
sensor based on electrospun nanofibers[J]. Journal of Textile
[20] SUN C Z (孙从振). The application research and the preparation of
Research (纺织学报), 2018, 39(12): 152-157,165.
the reactive nano carbon black[D]. Shanghai: Donghua University
[5] LEE J H, KIM J, LIU D, et al. Highly aligned, anisotropic carbon
(东华大学), 2016.
nanofiber films for multidirectional strain sensors with exceptional[J].
[21] ZHANG C C (张聪聪), ZHENG M K (郑梦凯), LI B G (李伯耿).
Advanced Functional Materials, 2019, 29(29): 1901623.
Effect of soft segment structure on properties of polyurethane
[6] ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable
elastomers[J]. Journal of Chemical Industry and Engineering (化工
polyurethane fiber strain sensors with embedded silver nanowires[J].
学报), 2019, 70(10): 4043-4051.
ACS Applied Materials & Interfaces, 2019, 11(26): 23649-23658.
[22] LIU J Z (刘检仔), PAN Z Q (潘肇琦), GAO Y (杲云). Influence of
[7] ZHANG W Q, YIN B, WANG J, et al. Ultrasensitive and wearable
the hard-segment content on the structure and properties of
strain sensors based on natural rubber/graphene foam[J]. Journal of
segmented polyurea[J]. Journal of South China University of Science
Alloys and Compounds, 2019, 785: 1001-1008.
and Technology (Natural Science Edition) (华东理工大学学报: 自
[8] DING Y C, YANG J, TOLLE C R, et al. A highly stretchable strain
然科学版), 2006(10): 1187-1191.
sensor based on electronspun carbon nanofibers for human motion
monitoring[J]. RSC Advances, 2016, 6(82): 79114-79120. [23] SADEGHI M, SHAMSABADI A A, RONASI A, et al. Engineering
the dispersion of nanoparticles in polyurethane membranes to control
[9] TAO C (陶灿). Regulation of microphase separation morphology,
properties and applications of polyurethane[D]. Hefei: Anhui membrane physical andtransport properties[J]. Chemical Engineering
Science, 2018, 192: 688-698.
University (安徽大学), 2018.
[10] KHAN U, BLIGHE F M, COLEMAN J N. Selective mechanical [24] SUN J (孙建). Prepare and study on the properies of different soft
reinforcement of thermoplastic polyurethane by targeted insertion of segments polyurethane/semi-organic crystal composites[D]. Taiyuan:
functionalized SWCNTs[J]. Journal of Physical Chemistry, 2010, Taiyuan University of Technology (太原理工大学), 2014.
114(26): 11401-11408. [25] KIM H D, LEE T J, HUH J H, et al. Preparation and properties of
[11] LIFF S M, KUMAR N, MCKINLEY G H, et al. High performance segmented thermoplastic polyurethane elastomers with two different
elastomeric nanocomposites via solvent exchange processing[J]. soft segments[J]. Applied Polymer, 1999, 73(3): 345-352.
Nature Materials, 2007, 6(1): 76-83. [26] ISFAHANI A P, SADEGHI M, WAKIMOTO K, et al. Enhancement
[12] CHEN C ( 陈萃 ). Preparation and properties of carbon of CO 2 capture by polyethylene glycol-based polyurethane
nanotubepolyurethane composites[D]. Harbin: Heilongjiang Membranes[J]. Journal of Membrane Science, 2017, 542: 143-149.
University (黑龙江大学), 2010. [27] LIU H (刘虎). Stimulus response and mechanistic studies of flexible
[13] LEFRANT S, BUISSON J P, CHAUVET O, et al. Raman studies of conductive thermoplastic polyurethane nanocomposites[D]. Zhengzhou:
carbon nanotubes and polymer nanotube composites[J]. Abstract of Zhengzhou University (郑州大学), 2017.
Papers of the American Chemical Society, 2004, 415(1): 125-132. [28] LI Y H, ZHOU B, ZHENG G Q, et al. Continuously prepared highly
[14] HE Z L, ZHOU G H, BYUN J H, et al. Highly stretchable conductive and stretchable SWNT/MWNT synergistically composited
multi-walled carbon nanotube/thermoplastic polyurethane composite electrospun thermoplastic polyurethane yarns for wearable sensing[J].
fibers forultrasensitive, wearablestrain sensors[J]. Nanoscale, 2019, Journal of Materials Chemistry C, 2018, 6(9): 2258-2269.