Page 126 - 《精细化工》2020年第6期
P. 126

·1192·                            精细化工   FINE CHEMICALS                                 第 37 卷

            的电阻率为 1.22 Ω·m,传感系数为 45.64(拉伸应变                        11(13): 5884-5890.
            在 80%~120%);CB 的含量为 12.5%时,CB/PU 纳                 [15]  LI  Z,  ZHOU  X,  LIU  Y  H,  et al.  Highly  sensitive,  ultrastretchable
                                                                   strain  sensors  prepared  by  pumping  hybrid  hillers  of  carbon
            米纤维的电阻率为 0.14 Ω·m,传感系数为 167.43(拉
                                                                   nanotubes/cellulose  nanocrystal  into  electrospun  polyurethane
            伸应变在 80%~120%)。且 CNT/PU、CB/PU 纳米纤
                                                                   membranes[J].  ACS  Applied  Material  Interfaces,  2019,  11(13):
            维均有可重复性的、稳定的应变传感性能,纤维的                                 12968-12977.
            电阻率越小,导电聚氨酯纳米纤维的应变灵敏度                              [16]  ZHOU Y J,  ZHAN  P  F, REN M N,  et al.  Significantstretchability
            越高。                                                    enhancement  of  a  crack-based  strain  sensor  combined  with  high
                                                                   sensitivity  and  superior  durability  for  motion  monitoring[J].  ACS
            参考文献:                                                  Applied Material Interfaces, 2019, 11(7): 7405-7414.
                                                               [17]  WANG L X (王兰心), WANG B X (王冰新), SHEN M J (申玟静),
            [1]   YU G F (于桂凤). Fabrication of functionalized conducting polymer
                                                                   et al.  Response  characteristics  of  flexible  tensile  sensing  materials
                 fibers, physical characteristics and the potential applications in strain
                                                                   based on nano conductive carbon black and carbon fiber[J]. Modern
                 sensor[D]. Qingdao: Qingdao University (青岛大学), 2016.
                                                                   Chemical Industry (现代化工), 2018, 38(10): 154-157, 159.
            [2]   YAN T, WANG Z, PAN Z J, et al, Flexible strain sensors fabricated
                                                               [18]  HUANG X (黄响). Study on electrical conductivity of polypropylene
                 using carbon-based nanomaterials: A review[J]. Current Opinion in
                                                                   composite filled with modified carbon black[J]. Zhejiang Chemical
                 Solid State & Materials Science, 2018, 22(6): 213-228.
                                                                   Industry (浙江化工), 2019, 50(4): 14-16,19.
            [3]   KANG I, SCHULZ M J, KIM J H, et al. A carbon nanotube strain
                                                               [19]  BAI J J (白静静), SU H B (苏会博),LIU Z W (刘志伟). Preparation
                 sensor  for  structural  health  monitoring,  smart  materials  and
                                                                   and  rheological  properties  of  isocyanate  functionalized  carbon
                 structures[J]. 2006, 15(3): 737-748.
                                                                   nanotubes/thermoplastic  polyurethane  elastomer  composites[J].
            [4]   YAN T (闫涛), PAN Z J (潘志娟). Research status of flexible strain
                                                                   Materials Review (材料导报), 2018, 32 (24): 4386-4391.
                 sensor  based  on  electrospun  nanofibers[J].  Journal  of  Textile
                                                               [20]  SUN C Z (孙从振). The application research and the preparation of
                 Research (纺织学报), 2018, 39(12): 152-157,165.
                                                                   the  reactive  nano  carbon  black[D].  Shanghai:  Donghua  University
            [5]   LEE J H, KIM J, LIU D, et al. Highly aligned, anisotropic carbon
                                                                   (东华大学), 2016.
                 nanofiber films for multidirectional strain sensors with exceptional[J].
                                                               [21]  ZHANG C C (张聪聪), ZHENG M K (郑梦凯), LI B G (李伯耿).
                 Advanced Functional Materials, 2019, 29(29): 1901623.
                                                                   Effect  of  soft  segment  structure  on  properties  of  polyurethane
            [6]   ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable
                                                                   elastomers[J]. Journal of Chemical Industry and Engineering (化工
                 polyurethane fiber strain sensors with embedded silver nanowires[J].
                                                                   学报), 2019, 70(10): 4043-4051.
                 ACS Applied Materials & Interfaces, 2019, 11(26): 23649-23658.
                                                               [22]  LIU J Z (刘检仔), PAN Z Q (潘肇琦), GAO Y (杲云). Influence of
            [7]   ZHANG W Q, YIN B, WANG J, et al. Ultrasensitive and wearable
                                                                   the  hard-segment  content  on  the  structure  and  properties  of
                 strain sensors based on natural rubber/graphene foam[J]. Journal of
                                                                   segmented polyurea[J]. Journal of South China University of Science
                 Alloys and Compounds, 2019, 785: 1001-1008.
                                                                   and Technology (Natural Science Edition) (华东理工大学学报:  自
            [8]   DING Y C, YANG J, TOLLE C R, et al. A highly stretchable strain
                                                                   然科学版), 2006(10): 1187-1191.
                 sensor  based  on  electronspun  carbon  nanofibers  for  human  motion
                 monitoring[J]. RSC Advances, 2016, 6(82): 79114-79120.     [23]  SADEGHI M, SHAMSABADI A A, RONASI A, et al. Engineering
                                                                   the dispersion of nanoparticles in polyurethane membranes to control
            [9]   TAO  C  (陶灿).  Regulation  of  microphase  separation  morphology,
                 properties  and  applications  of  polyurethane[D].  Hefei:  Anhui   membrane physical andtransport properties[J]. Chemical Engineering
                                                                   Science, 2018, 192: 688-698.
                 University (安徽大学), 2018.
            [10]  KHAN  U,  BLIGHE  F  M,  COLEMAN  J  N.  Selective  mechanical   [24]  SUN J (孙建). Prepare and study on the properies of different soft
                 reinforcement of thermoplastic polyurethane by targeted insertion of   segments polyurethane/semi-organic crystal composites[D]. Taiyuan:
                 functionalized  SWCNTs[J].  Journal  of  Physical  Chemistry,  2010,   Taiyuan University of Technology (太原理工大学), 2014.
                 114(26): 11401-11408.                         [25]  KIM H D, LEE T J, HUH J H, et al. Preparation and properties of
            [11]  LIFF S M, KUMAR N, MCKINLEY G H, et al. High performance   segmented thermoplastic polyurethane elastomers with two different
                 elastomeric  nanocomposites  via  solvent  exchange  processing[J].   soft segments[J]. Applied Polymer, 1999, 73(3): 345-352.
                 Nature Materials, 2007, 6(1): 76-83.          [26]  ISFAHANI A P, SADEGHI M, WAKIMOTO K, et al. Enhancement
            [12]  CHEN  C  ( 陈萃 ).  Preparation  and  properties  of  carbon   of  CO 2  capture  by  polyethylene  glycol-based  polyurethane
                 nanotubepolyurethane   composites[D].   Harbin:   Heilongjiang   Membranes[J]. Journal of Membrane Science, 2017, 542: 143-149.
                 University (黑龙江大学), 2010.                     [27]  LIU H (刘虎). Stimulus response and mechanistic studies of flexible
            [13]  LEFRANT S, BUISSON J P, CHAUVET O, et al. Raman studies of   conductive thermoplastic polyurethane nanocomposites[D].  Zhengzhou:
                 carbon nanotubes and polymer nanotube composites[J]. Abstract of   Zhengzhou University (郑州大学), 2017.
                 Papers of the American Chemical Society, 2004, 415(1): 125-132.    [28]  LI Y H, ZHOU B, ZHENG G Q, et al. Continuously prepared highly
            [14]  HE  Z  L,  ZHOU  G  H,  BYUN  J  H,  et al.  Highly  stretchable   conductive and stretchable SWNT/MWNT synergistically composited
                 multi-walled carbon nanotube/thermoplastic polyurethane composite   electrospun thermoplastic polyurethane yarns for wearable sensing[J].
                 fibers  forultrasensitive,  wearablestrain  sensors[J].  Nanoscale,  2019,   Journal of Materials Chemistry C, 2018, 6(9): 2258-2269.
   121   122   123   124   125   126   127   128   129   130   131