Page 130 - 《精细化工》2020年第8期
P. 130

·1628·                            精细化工   FINE CHEMICALS                                 第 37 卷

            也具有一定的参考价值。                                            nanoparticles[J]. Materials Science-Poland, 2013, 31: 264-268.
                                                               [12]  HUANG Y, YAO J H, ZHENG Y Y, et al. A simple preparation of
            参考文献:                                                  rod-like  Fe 2O 3  with  superior  lithium  storage  performance[J].
                                                                   Materials Letters, 2019, 234: 105-108.
            [1]   PARK  J,  YOO  H,  CHOI  J.  3D  ant-nest  network  of  α-Fe 2O 3  on   [13]  WANG  H,  YANG  H  X,  LU  L.  Island-like  mesoporous  amorphous
                 stainless  steel  for  all-in-one  anode  for  Li-ion  battery[J].  Journal  of   Fe 2O 3 layer: Surface disorder engineering for enhanced lithium-storage
                 Power Sources, 2019, 431: 25-30.                  performance[J]. Electrochimica Acta, 2016, 188: 679-685.
            [2]   POIZOT  P,  LARUELLE  S,  GRUGEON  S,  et al.  Nano-sized   [14]  ZHANG J J, SUN Y F, YAO Y, et al. Lysine-assisted hydrothermal
                 transition-metal oxides as negative-electrode materials for lithium-ion   synthesis  of  hierarchically  porous  Fe 2O 3  microspheres  as  anode
                 batteries[J]. Nature, 2000, 407(6803): 496-499.   materials  for  lithium-ion  batteries[J].  Journal  of  Power  Sources,
            [3]   LI  Y  W,  HUANG  Y  Y,  ZHENG  Y  Y,  et al.  Facile  and  efficient   2013, 222: 59-65.
                 synthesis  of  α-Fe 2O 3  nanocrystals  by  glucose-assisted  thermal   [15]  GAO  G  X,  YU  L,  WU  H  B,  et al.  Hierarchical  tubular  structures
                 decomposition method and its application in lithium ion batteries[J].   constructed  by  carbon-coated  alpha-Fe 2O 3  nanorods  for  highly
                 Journal of Power Sources, 2019, 416: 62-71.       reversible lithium storage[J]. Small, 2014, 10(9): 1741-1745.
            [4]   HUANG Y, LI Y W, HUANG R S, et al. Ternary Fe 2O 3/Fe 3O 4/FeCO 3   [16]  ZHENG Y Y, LI Y W, HUANG R S, et al. Fabrication of 2D NiO
                 composite as a high-performance anode material for Li-ion batteries[J].   porous  nanosheets  with  superior  lithium  storage  performance  via a
                 Journal of Physical Chemistry C, 2019, 123(20): 12614-12622.
            [5]   JIANG  T  X,  BU  F  C,  FENG  X  X,  et al.  Porous  Fe 2O 3   facile  thermal-decomposition  method[J].  ACS  Applied  Energy
                 nanoframeworks encapsulated within three-dimensional graphene as   Materials, 2019, 2(11): 8262-8273.
                 high-performance  flexible  anode  for  lithium-ion  battery[J].  ACS   [17]  ZHENG  Z  M,  ZAO  Y,  ZHANG  Q  B,  et al.  Robust  erythrocyte-like
                 Nano, 2017, 11(5): 5140-5147.                     Fe 2O 3@ carbon with yolk-shell structures as high-performance anode for
            [6]   MENG  J  K,  ZHAO  Q  Q,  YE  W  H,  et al.  Facile  assembly  and   lithium  ion  batteries[J].  Chemical  Engineering  Journal,  2018,  347:
                 electrochemical properties of α-Fe 2O 3@graphene aerogel composites as   563-573.
                 electrode  materials  for  lithium  ion  batteries[J].  Materials  Chemistry  &   [18]  LI Y W, HUANG R H, PAN G L, et al. High tap density Fe-doped
                 Physics, 2016, 182: 190-199.                      nickel hydroxide with enhanced lithium storage performance[J]. ACS
            [7]   WANG  Z  K,  ZHANG  Z  R,  XIA  J,  et al. Fe 2O 3@C  core@shell   Omega, 2019, 4: 7759-7765.
                 nanotubes: Porous Fe 2O 3 nanotubes derived from MIL-88A as cores   [19]  LI Y W, PAN G L, XU W Q, et al. Effect of Al substitution on the
                 and carbon as shells for high power lithium ion batteries[J]. Journal   microstructure and lithium storage performance of nickel hydroxide[J].
                 of Alloys and Compounds, 2018, 769: 969-976.      Journal of Power Sources, 2016, 307: 114-121.
            [8]   WANG C Z, ZHAO Y J, ZHAI X M, et al. Confining ferric oxides in   [20]  YAO  J  H,  ZHANG  Y  F,  YAN  J,  et al.  Nanoparticles-constructed
                 porous carbon  for  efficient  lithium  storage[J].  Electrochimica Acta,   spinel  ZnFe 2O 4  anode  material  with  superior  lithium  storage
                 2018, 292: 879-886.                               performance  boosted  by  pseudocapacitance[J].  Materials  Research
            [9]   AKIA  M,  SALINAS  N,  LUNA  S,  et al.  In situ synthesis of   Bulletin, 2018, 104: 188-193.
                 Fe 3O 4-reinforced  carbon  fiber  composites  as  anodes  in  lithium-ion   [21]  YAO J H, YIN Z L, ZOU Z G, et al. Y-doped V 2O 5 with enhanced
                 batteries[J]. Journal of Materials Science, 2019, 54(21): 13479-13490.   lithium storage performance[J]. RSC Advances, 2017, 7(51): 32327-
            [10]  WU  N,  SHI  Y  R,  MA  C,  et al.  High  performance  nano-α-Fe 2O 3   32335.
                 electrode  materials  synthesized  by  facile  and  green  approaches  for   [22]  WU  F,  HUANG  R,  MU  D  B,  et al.  New  synthesis  of  a  foamlike
                 lithium-ion batteries[J]. Materials Letters, 2019, 238: 155-158.   Fe 3O 4/C composite via a self-expanding process and its electrochemical
            [11]  ALIAHMAD  M,  MOGHADDAM  N  N.  Synthesis  of  maghemite   performance  as  anode  material  for  lithium-ion  batteries[J].  ACS
                 (γ-Fe 2O 3) nanoparticles by thermal-decomposition of magnetite (Fe 3O 4)   Applied Materials & Interfaces, 2014, 6(21): 19254-19264.


            (上接第 1620 页)                                       [16]  AIGNER  D,  UNGERBÖCK  B,  MAYR  T, et al.  Fluorescent
                                                                   materials  for  pH  sensing  and  imaging  based  on  novel
            [12]  NOVAKOVA V, MØRKVED E H, MILETIN M, et al. Influence of   1,4-diketopyrrolo-3,4-cpyrrole  dyes[J].  Journal  of  Materials
                 protonation  of  peripheral  substituents  on  photophysical  and   Chemistry C, 2013, 1(36): 5685-5693.
                 photochemical  properties  of  tetrapyrazinoporphyrazines[J].  Journal   [17]  NIU T C, SI N, ZHOU D C, et al. Submolecular imaging of parallel
                 of Porphyrins and Phthalocyanines, 2010, 14(7): 582-591.   offset  π-π  stacking  in  nonplanar  phthalocyanine  bilayers[J].  the
            [13]  NOVAKOVA  V,  MILETIN  M,  KOPECKY  K,  et al.  Red-emitting   Journal of Physical Chemistry C, 2019, 123(12): 7178-7184.
                 dyes with photophysical and photochemical properties controlled by   [18]  BAYDA  M,  DUMOULIN  F,  HUG  G  L,  et al.  Fluorescent
                 pH[J]. Chemistry-A European Journal, 2011, 17(50): 14273-14282.   H-aggregates  of  an  asymmetrically  substituted  mono-amino  Zn(Ⅱ)
            [14]  FU C Y, KOBAYASHI T, WANG N X, et al. Genetically encoding   phthalocyanine[J]. Dalton Transactions, 2017, 46(6): 1914-1926.
                 quinoline  reverses  chromophore  charge  and  enables  fluorescent   [19]  YOKOI  T,  HATTORI  S,  ISHII  K.  Encapsulation  of  zinc
                 protein  brightening  in  acidic  vesicles[J].  Journal  of  the  American   phthalocyanine into bovine serum albumin aggregates[J]. Journal of
                 Chemical Society, 2018, 140(35): 11058-11066.     Coordination Chemistry, 2019, 72(4): 707-715.
            [15]  GOTOR R, ASHOKKUMAR P, HECHT M, et al. Optical pH sensor   [20]  HILL  J  P,  ROSSOM  W  V,  ISHIHARA  S, et al.  Unexpected  but
                 covering  the  range  from  pH  0~14  compatible  with  mobile-device   convenient  synthesis  of  soluble  meso-tetrakis  (3,4-benzoquinone)-
                 readout and based on a set of rationally designed indicator dyes[J].   substituted porphyrins[J]. Journal of Porphyrins and Phthalocyanines,
                 Analytical Chemistry, 2017, 89(16): 8437-8444.    2014, 18(3): 173-181.
   125   126   127   128   129   130   131   132   133   134   135