Page 130 - 《精细化工》2020年第8期
P. 130
·1628· 精细化工 FINE CHEMICALS 第 37 卷
也具有一定的参考价值。 nanoparticles[J]. Materials Science-Poland, 2013, 31: 264-268.
[12] HUANG Y, YAO J H, ZHENG Y Y, et al. A simple preparation of
参考文献: rod-like Fe 2O 3 with superior lithium storage performance[J].
Materials Letters, 2019, 234: 105-108.
[1] PARK J, YOO H, CHOI J. 3D ant-nest network of α-Fe 2O 3 on [13] WANG H, YANG H X, LU L. Island-like mesoporous amorphous
stainless steel for all-in-one anode for Li-ion battery[J]. Journal of Fe 2O 3 layer: Surface disorder engineering for enhanced lithium-storage
Power Sources, 2019, 431: 25-30. performance[J]. Electrochimica Acta, 2016, 188: 679-685.
[2] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized [14] ZHANG J J, SUN Y F, YAO Y, et al. Lysine-assisted hydrothermal
transition-metal oxides as negative-electrode materials for lithium-ion synthesis of hierarchically porous Fe 2O 3 microspheres as anode
batteries[J]. Nature, 2000, 407(6803): 496-499. materials for lithium-ion batteries[J]. Journal of Power Sources,
[3] LI Y W, HUANG Y Y, ZHENG Y Y, et al. Facile and efficient 2013, 222: 59-65.
synthesis of α-Fe 2O 3 nanocrystals by glucose-assisted thermal [15] GAO G X, YU L, WU H B, et al. Hierarchical tubular structures
decomposition method and its application in lithium ion batteries[J]. constructed by carbon-coated alpha-Fe 2O 3 nanorods for highly
Journal of Power Sources, 2019, 416: 62-71. reversible lithium storage[J]. Small, 2014, 10(9): 1741-1745.
[4] HUANG Y, LI Y W, HUANG R S, et al. Ternary Fe 2O 3/Fe 3O 4/FeCO 3 [16] ZHENG Y Y, LI Y W, HUANG R S, et al. Fabrication of 2D NiO
composite as a high-performance anode material for Li-ion batteries[J]. porous nanosheets with superior lithium storage performance via a
Journal of Physical Chemistry C, 2019, 123(20): 12614-12622.
[5] JIANG T X, BU F C, FENG X X, et al. Porous Fe 2O 3 facile thermal-decomposition method[J]. ACS Applied Energy
nanoframeworks encapsulated within three-dimensional graphene as Materials, 2019, 2(11): 8262-8273.
high-performance flexible anode for lithium-ion battery[J]. ACS [17] ZHENG Z M, ZAO Y, ZHANG Q B, et al. Robust erythrocyte-like
Nano, 2017, 11(5): 5140-5147. Fe 2O 3@ carbon with yolk-shell structures as high-performance anode for
[6] MENG J K, ZHAO Q Q, YE W H, et al. Facile assembly and lithium ion batteries[J]. Chemical Engineering Journal, 2018, 347:
electrochemical properties of α-Fe 2O 3@graphene aerogel composites as 563-573.
electrode materials for lithium ion batteries[J]. Materials Chemistry & [18] LI Y W, HUANG R H, PAN G L, et al. High tap density Fe-doped
Physics, 2016, 182: 190-199. nickel hydroxide with enhanced lithium storage performance[J]. ACS
[7] WANG Z K, ZHANG Z R, XIA J, et al. Fe 2O 3@C core@shell Omega, 2019, 4: 7759-7765.
nanotubes: Porous Fe 2O 3 nanotubes derived from MIL-88A as cores [19] LI Y W, PAN G L, XU W Q, et al. Effect of Al substitution on the
and carbon as shells for high power lithium ion batteries[J]. Journal microstructure and lithium storage performance of nickel hydroxide[J].
of Alloys and Compounds, 2018, 769: 969-976. Journal of Power Sources, 2016, 307: 114-121.
[8] WANG C Z, ZHAO Y J, ZHAI X M, et al. Confining ferric oxides in [20] YAO J H, ZHANG Y F, YAN J, et al. Nanoparticles-constructed
porous carbon for efficient lithium storage[J]. Electrochimica Acta, spinel ZnFe 2O 4 anode material with superior lithium storage
2018, 292: 879-886. performance boosted by pseudocapacitance[J]. Materials Research
[9] AKIA M, SALINAS N, LUNA S, et al. In situ synthesis of Bulletin, 2018, 104: 188-193.
Fe 3O 4-reinforced carbon fiber composites as anodes in lithium-ion [21] YAO J H, YIN Z L, ZOU Z G, et al. Y-doped V 2O 5 with enhanced
batteries[J]. Journal of Materials Science, 2019, 54(21): 13479-13490. lithium storage performance[J]. RSC Advances, 2017, 7(51): 32327-
[10] WU N, SHI Y R, MA C, et al. High performance nano-α-Fe 2O 3 32335.
electrode materials synthesized by facile and green approaches for [22] WU F, HUANG R, MU D B, et al. New synthesis of a foamlike
lithium-ion batteries[J]. Materials Letters, 2019, 238: 155-158. Fe 3O 4/C composite via a self-expanding process and its electrochemical
[11] ALIAHMAD M, MOGHADDAM N N. Synthesis of maghemite performance as anode material for lithium-ion batteries[J]. ACS
(γ-Fe 2O 3) nanoparticles by thermal-decomposition of magnetite (Fe 3O 4) Applied Materials & Interfaces, 2014, 6(21): 19254-19264.
(上接第 1620 页) [16] AIGNER D, UNGERBÖCK B, MAYR T, et al. Fluorescent
materials for pH sensing and imaging based on novel
[12] NOVAKOVA V, MØRKVED E H, MILETIN M, et al. Influence of 1,4-diketopyrrolo-3,4-cpyrrole dyes[J]. Journal of Materials
protonation of peripheral substituents on photophysical and Chemistry C, 2013, 1(36): 5685-5693.
photochemical properties of tetrapyrazinoporphyrazines[J]. Journal [17] NIU T C, SI N, ZHOU D C, et al. Submolecular imaging of parallel
of Porphyrins and Phthalocyanines, 2010, 14(7): 582-591. offset π-π stacking in nonplanar phthalocyanine bilayers[J]. the
[13] NOVAKOVA V, MILETIN M, KOPECKY K, et al. Red-emitting Journal of Physical Chemistry C, 2019, 123(12): 7178-7184.
dyes with photophysical and photochemical properties controlled by [18] BAYDA M, DUMOULIN F, HUG G L, et al. Fluorescent
pH[J]. Chemistry-A European Journal, 2011, 17(50): 14273-14282. H-aggregates of an asymmetrically substituted mono-amino Zn(Ⅱ)
[14] FU C Y, KOBAYASHI T, WANG N X, et al. Genetically encoding phthalocyanine[J]. Dalton Transactions, 2017, 46(6): 1914-1926.
quinoline reverses chromophore charge and enables fluorescent [19] YOKOI T, HATTORI S, ISHII K. Encapsulation of zinc
protein brightening in acidic vesicles[J]. Journal of the American phthalocyanine into bovine serum albumin aggregates[J]. Journal of
Chemical Society, 2018, 140(35): 11058-11066. Coordination Chemistry, 2019, 72(4): 707-715.
[15] GOTOR R, ASHOKKUMAR P, HECHT M, et al. Optical pH sensor [20] HILL J P, ROSSOM W V, ISHIHARA S, et al. Unexpected but
covering the range from pH 0~14 compatible with mobile-device convenient synthesis of soluble meso-tetrakis (3,4-benzoquinone)-
readout and based on a set of rationally designed indicator dyes[J]. substituted porphyrins[J]. Journal of Porphyrins and Phthalocyanines,
Analytical Chemistry, 2017, 89(16): 8437-8444. 2014, 18(3): 173-181.