Page 137 - 《精细化工》2020年第8期
P. 137
第 8 期 谭 宇,等: 硅橡胶泡沫/空心玻璃微珠复合材料的制备及性能 ·1635·
gamma irradiation upon silicone foam[J]. Radiation Physics and silicone rubber foam insulation materials[J]. China Synthetic Rubber
Chemistry, 2017, 133: 31-36. Industry (合成橡胶工业), 2018, 41(3): 200-203.
[16] XUE Y, LI X F, ZHANG D H, et al. Comparison of ATH and SiO 2 [27] EROĞLU M S. Characterization of the network structure of hydroxyl
fillers filled silicone rubber composites for HTV insulators[J]. terminated poly(butadiene) elastomers prepared by different
Composites Science and Technology, 2018, 155: 137-143. reactive systems[J]. Journal of Applied Polymer Science, 1998,
[17] LIU B, HUANG W, AO Y Y, et al. Dose rate effects of gamma 70(6): 1129-1135.
irradiation on silicone foam[J]. Polymer Degradation and Stability, [28] XU L (徐乐). Development of high elastic silicone rubber foam
2018, 147: 97-102. materials[D]. Mianyang: Southwest University of Science and
[18] KUMAR V, LEE D J, LEE J Y. Studies of RTV silicone rubber Technology (西南科技大学), 2013.
nanocomposites based on graphitic nanofillers[J]. Polymer Testing, [29] STEWART C W. Nucleation and growth of rubbers in elastomer[J].
2016, 56: 369-378. Journal of Polymer Science: Part A-2, 1970, 62(8): 937-955.
[19] BROOK M A. New control over silicone synthesis using Si—H [30] TAN S (谭珊). Research on preparation and properties of low density
chemistry: The piers-rubinsztajn reaction[J]. Chemistry-A European and flame retardant silicone rubber foam[D]. Qingdao: Qingdao
Journal, 2018, 24(34): 8458-8469. University of Science & Technology (青岛科技大学), 2017.
[20] XU Y, GAO Q, LIANG H Q, et al. Effects of functional graphene [31] ZHANG C L, ZHANG C Y, HUANG R, et al. Effects of hollow
oxide on the properties of phenyl silicone rubber composites[J]. microspheres on the thermal insulation of polysiloxane foam[J].
Polymer Testing, 2016, 54: 168-175. Journal of Applied Polymer Science, 2017, 134(18): 1-7.
[21] JAWHAR M D, BLANC D, CHAUMONT P, et al. Study of the [32] GAO J, WANG J B, XU H Y, et al. Preparation and properties of
coalescence mechanisms during silicone foaming[J]. Macromolecular hollow glass bead filled silicone rubber foams with low thermal
Materials and Engineering, 2014, 299(3): 336-343. conductivity[J]. Materials and Design, 2013, 46: 491-496.
[22] JIA Z M (贾振梅), CHEN S J (陈双俊), ZHANG J (张军). Influence [33] LI B (李彬). Study on the preparation and properties of new silicone
of filler on properties of room temperature vulcanized vinyl- rubber foam[D]. Guangzhou: South China University of Technology
terminated silicone rubber[J]. China Rubber Industry (橡胶工业), (华南理工大学), 2011.
2013, 60(3): 147-153. [34] SONG L X ( 宋丽 贤 ). Surface interaction and reinforcement
[23] KANG F R, WANG C P, DENG J, et al. Effects of talc/hollow glass mechanism in silicon rubber filled silica[D]. Hefei: University of
beads on the flame retardancy of silicone foams[J]. Materials Science and Technology of China (中国科学技术大学), 2017.
Research Express, 2019, 6(9): 1-8. [35] HU Y, DU Z, DENG X, et al. Dual physically cross-linked hydrogels
[24] CHEN S S (陈水生). Preparation and study on properties of silicone with high stretchability, toughness, and toughness and good
rubber low density composites modified with silicone resin[D]. self-recoverability[J]. Macromolecules, 2016, 49(15): 5660-5668.
Wuhan: Wuhan University of Technology (武汉理工大学), 2018. [36] VASILAKOS S P, ATHANASOULIA I G, TARANTILI P A, et al.
[25] YE D D (叶丹丹), WEN Q Z (文庆珍), WANG X Q (王晓晴). Thermomechanical properties and bioactivity evaluation of silicone
Research of hollow glass beads/silicone rubber heat insulation rubber composites[J]. Polymer Composites, 2018, 39(7): 2560-2570.
material[J]. China Elastomeric (弹性体), 2017, 27(2): 24-28. [37] LUO Y Y (罗瑜莹). Study on preparation and properties of poplar
[26] WANG X Q (王晓晴), WEN Q Z (文庆珍), ZHU J H (朱金华). fiber porous cushioning packaing materials[D]. Haerbin: Northeast
Effects of hollow glass bead on micromorphology and properties of Forestry University (东北林业大学), 2018.
(上接第 1607 页) U(VI) from aqueous solutions[J]. RSC Advances, 2018, 8(23):
12684-12691.
[8] WEI J, YANG H Y, CAO H, et al. Using polyaspartic acid hydrogel [16] ZHAO Y, SU H J, FANG L, et al. Superabsorbent hydrogels from
as water retaining agent and its effect on plants under drought poly (aspartic acid) with salt-, temperature- and pH-responsiveness
stress[J]. Saudi Journal of Biological Sciences, 2016, 23(5): 654-659. properties[J]. Polymer, 2005, 46(14): 5368-5376.
[9] ZHANG X (张鑫), SHI L J (史璐皎), LIU X Y (刘晓云), et al. The [17] THIEMANN S, KAUFMANN H. Determination of chlorophyl
research of enhancing phytoremediation of heavy metals contaminated content and trophic state of lakes using field spectrometer and
soil with PASP[J]. Chinese Agricultural Science Bulletin, 2013, IRS-1C satellite data in the Mecklenburg Lake District, Germany[J].
29(29): 151-156. Remote Sensing of Environment, 2000, 73(2): 227-235.
[10] HAQUE M A, KUROKAWA T, GONG J P. Super tough double [18] WILHELM M, REINHEIMER P, ORTSEIFEI M. High sensitivity
network hydrogels and their application as biomaterials[J]. Polymer, fourier-transform rheology[J]. Rheologica Acta, 1999, 38(38): 349-356.
2012, 53: 1805-1822. [19] HA J S, KIM M S, LEE W S, et al. Direct measurement of
[11] CUI L, JIA J F, GUO Y, et al. Preparation and characterization of crosslinked surface layer in superabsorbent poly(acrylic acid)[J].
IPN hydrogels composed of chitosan and gelatin cross-linked by Materials Letters, 2018, 228: 33-36.
genipin[J]. Carbohydrate Polymers, 2014, 99: 31-38. [20] WANG X N (王雪妮), XU J H (徐继红), HE M Q (何梦奇), et al.
[12] HU D (胡灯), LI Q (李琼), ZHAO Y S (赵彦生), et al. Synthesis and Synthesis and characterization of a GA-g-PAA/ST composite
characterization of modified poly(aspartic acid)/poly(acrylic hydrogel[J]. Fine Chemicals (精细化工), 2019, 36(4): 633-638.
acid-acrylamide) interpenetrating network absorbent resin[J]. Polymer [21] LIU M M, WANG L L, SU H J, et al. pH-sensitive IPN hydrogel
Materials Science and Engineering (高分子材料科学与工程), 2016, based on poly (aspartic acid) and poly (vinyl alcohol) for controlled
32(10): 30-35. release[J]. Polymer Bulletin, 2013, 70(10): 2815-2827.
[13] TAN T W, FANG L, CAO H. Synthesis of polyaspartic acid: [22] GYARMATI B, NEMETHY A, SZILAGYI A. Reversible response
CN1341676A[P]. 2001-10-08. of poly(aspartic acid) hydrogels to external redox and pH stimuli[J].
[14] LIU Z J (刘泽珺), ZHOU S Q (周少奇), MA F Z (马福臻). Rsc Advances, 2014, 4(17): 8764-8771.
Preparation of PAAm/HACC semi-interpenetrate network hydrogel [23] ZHANG J, YAO Y C, STREETER J G, et al. Influence of soil
and its adsorption poperties for humic acid from aqueous solution[J]. drought stress on photosynthesis, carbohydrates and the nitrogen and
Environmental Science (环境科学), 2018, 39(3): 1233-1240. phosphorus absorb in different section of leaves and stem of
[15] HE J R, SUN F L, HAN F H, et al. Preparation of a novel polyacrylic Fugi/M.9EML, a young apple seedling[J]. African Journal of
acid and chitosan interpenetrating network hydrogel for removal of Biotechnology, 2010, 9(33): 5320-5325.