Page 136 - 《精细化工》2020年第8期
P. 136
·1634· 精细化工 FINE CHEMICALS 第 37 卷
过程对 EPE 材料有较大影响,可能是由于疲劳过程 54.5%)。疲劳过程对 SF/HGB6 复合材料的影响不
导致内部结构塌陷,弹性变差引起。疲劳过程对 大,疲劳实验前后 SF/HGB6 复合材料的缓冲系数几
SF/HGB6 的影响不大,疲劳实验前后 SF/HGB6 的 乎没有变化。
缓冲系数几乎没有变化。综上所述,SF/HGB6 复合 (5)与传统的缓冲材料 EPE 相比,SF/HGB6
材料具有优异的抗疲劳性能,优于传统的 EPE 缓冲 复合材料具有更好的抗疲劳性能和成型加工性能,
材料。 在包装领域尤其是复杂的缓冲包装构件中有较大的
应用潜力。下一步研究的重点是高韧性、高阻燃型
SF 复合材料,进一步提高材料的韧性和阻燃性,以
满足更高的应用需求。
参考文献:
[1] LU J X (卢佳欣), LIU H (刘惠), SHEN D D (沈丹丹), et al.
Degradable foaming material and its application in cushion
packaging[J]. Green Packaging (绿色包装), 2017, 3: 41-47.
[2] DU X Y ( 杜新亚 ). Preparation and study of modified
montmorillonite-plant fiber composite foaming material[D]. Guangzhou:
South China University of Technology (华南理工大学), 2019.
[3] YANG P (杨鹏), LI J Y(李加友), LI J J(李娟娟), et al. Development
of biodegradable biomass packaging materials and its properties[J].
Packaging Engineering (包装工程), 2019, 40(11): 112-116.
[4] YANG S (杨帅). Research on cushioning properties of EPE[D].
Tianjin: Tianjin University of Science and Technology (天津科技大
学), 2015.
[5] ZHAN X B, CAI X Q, ZHANG J Y, et al. A novel crosslinking agent
of polymethyl(ketoxime)siloxane for room temperature vulcanized
silicone rubbers: Synthesis, properties and thermal stability[J]. RSC
Advances, 2018, 8(23): 12517-12525.
[6] LIU Y F, CHI W D, DUAN H Y, et al. Property improvement of
room temperature vulcanized silicone elastomer by surface-modified
multi-walled carbon nanotube inclusion[J]. Journal of Alloys and
Compounds, 2016, 657: 472-477.
[7] LI Q G, HUANG X J, LIU H, et al. Properties enhancement of room
图 6 SF/HGB6 及 EPE 材料的疲劳时间和高度保持率(a) temperature vulcanized silicone rubber by rosin modified
及缓冲系数(b) aminopropyltriethoxysilane as a cross-linking agent[J]. ACS
Fig. 6 Fatigue times and height retention rate of SF/HGB6 Sustainable Chemistry & Engineering, 2017, 5(11): 10002-10010.
and EPE after dynamic compressive fatigue test (a), [8] ZHANG Y, HE J Y, YANG R J, et al. The effects of
and cushioning coefficient-strain curves of SF/ phosphorus-based flame retardants and octaphenyl polyhedral
HGB6 and EPE before and after fatigue test oligomeric silsesquioxane on the ablative and flame-retardation
properties of room temperature vulcanized silicone rubber insulating
composites[J]. Polymer Degradation and Stability, 2016, 125:
140-147.
3 结论 [9] YAN H, WANG K, ZHAO Y. Fabrication of silicone rubber foam
with tailored porous structures by supercritical CO 2[J].
(1)采用室温硫化法制备了 SF/HGB 复合材料, Macromolecular Materials and Engineering, 2016, 302(2): 1-11.
[10] XIANG B, JIA Y L, LEI Y J, et al. Mechanical properties of
结果表明,HGB 用量对 SF/HGB 复合材料的泡孔结
microcellular and nanocellular silicone rubber foams obtained by
构及性能存在较大影响。 supercritical carbon dioxide[J]. Polymer Journal, 2019, 51(6):
559-568.
(2)通过对 SF/HGB 复合材料的交联密度、泡
[11] YANG Q, YU H T, SONG L X, et al. Solid-state microcellular high
孔结构、机械性能、动态力学性能的研究,发现 HGB temperature vulcanized (HTV) silicone rubber foam with carbon
质量分数为 6.0%时,复合材料具有最佳的综合性 dioxide[J]. Journal of Applied Polymer Science, 2017, 134(20): 1-7.
[12] LIAO X, XU H, LI S J, et al. The effects of viscoelastic properties on
能。 the cellular morphology of silicone rubber foams generated by
(3)通过静态压缩实验研究了 SF/HGB6 复合材 supercritical carbon dioxide[J]. RSC Advances, 2015, 129(5):
106981-106988.
料的缓冲性能,SF/HGB6 复合材料的缓冲系数与 [13] TANG W Y, LIAO X, ZHANG Y, et al. Mechanical-microstructure
EPE 非常接近。 relationship and cellular failure mechanism of silicone rubber foam
by the cell microstructure designed in supercritical CO 2[J]. Journal of
(4)采用动态压缩疲劳实验研究了 SF/HGB6
Physical Chemistry C, 2019, 123(44): 26947-26956.
复合材料的疲劳性能,SF/HGB6 复合材料的疲劳次 [14] GUO C, KONDO Y, TAKAI C, et al. Piezoresistivities of vapor-
grown carbon fiber/silicone foams for tactile sensor applications[J].
数达到 600 万次,疲劳实验后 SF/HGB6 复合材料的
Polymer International, 2017, 66(3): 418-427.
高度保持率为 98.4%,远大于 EPE 材料(29 万次, [15] LIU B, WANG P C, AO Y Y, et al. Effects of combined neutron and