Page 136 - 《精细化工》2020年第8期
P. 136

·1634·                            精细化工   FINE CHEMICALS                                 第 37 卷

            过程对 EPE 材料有较大影响,可能是由于疲劳过程                          54.5%)。疲劳过程对 SF/HGB6 复合材料的影响不
            导致内部结构塌陷,弹性变差引起。疲劳过程对                              大,疲劳实验前后 SF/HGB6 复合材料的缓冲系数几
            SF/HGB6 的影响不大,疲劳实验前后 SF/HGB6 的                     乎没有变化。
            缓冲系数几乎没有变化。综上所述,SF/HGB6 复合                            (5)与传统的缓冲材料 EPE 相比,SF/HGB6
            材料具有优异的抗疲劳性能,优于传统的 EPE 缓冲                          复合材料具有更好的抗疲劳性能和成型加工性能,
            材料。                                                在包装领域尤其是复杂的缓冲包装构件中有较大的
                                                               应用潜力。下一步研究的重点是高韧性、高阻燃型

                                                               SF 复合材料,进一步提高材料的韧性和阻燃性,以
                                                               满足更高的应用需求。

                                                               参考文献:
                                                               [1]   LU J X (卢佳欣), LIU H (刘惠),  SHEN  D  D  (沈丹丹),  et al.
                                                                   Degradable  foaming  material  and  its  application  in  cushion
                                                                   packaging[J]. Green Packaging (绿色包装), 2017, 3: 41-47.
                                                               [2]   DU  X  Y  ( 杜新亚 ).  Preparation  and  study  of  modified
                                                                   montmorillonite-plant fiber composite foaming material[D]. Guangzhou:
                                                                   South China University of Technology (华南理工大学), 2019.
                                                               [3]   YANG P (杨鹏), LI J Y(李加友), LI J J(李娟娟), et al. Development
                                                                   of biodegradable biomass packaging materials and its properties[J].
                                                                   Packaging Engineering (包装工程), 2019, 40(11): 112-116.
                                                               [4]   YANG S (杨帅).  Research  on  cushioning  properties  of  EPE[D].
                                                                   Tianjin: Tianjin University of Science and Technology (天津科技大
                                                                   学), 2015.
                                                               [5]   ZHAN X B, CAI X Q, ZHANG J Y, et al. A novel crosslinking agent
                                                                   of  polymethyl(ketoxime)siloxane  for  room  temperature  vulcanized
                                                                   silicone rubbers: Synthesis, properties and thermal stability[J]. RSC
                                                                   Advances, 2018, 8(23): 12517-12525.
                                                               [6]   LIU  Y  F,  CHI  W  D,  DUAN  H  Y,  et al.  Property  improvement  of
                                                                   room temperature vulcanized silicone elastomer by surface-modified
                                                                   multi-walled  carbon  nanotube  inclusion[J].  Journal  of  Alloys  and
                                                                   Compounds, 2016, 657: 472-477.
                                                               [7]   LI Q G, HUANG X J, LIU H, et al. Properties enhancement of room
            图 6  SF/HGB6 及 EPE 材料的疲劳时间和高度保持率(a)                    temperature  vulcanized  silicone  rubber  by  rosin  modified
                  及缓冲系数(b)                                         aminopropyltriethoxysilane  as  a  cross-linking  agent[J].  ACS
            Fig. 6    Fatigue times and height retention rate of SF/HGB6   Sustainable Chemistry & Engineering, 2017, 5(11): 10002-10010.
                   and EPE after dynamic compressive fatigue test (a),   [8]   ZHANG  Y,  HE  J  Y,  YANG  R  J,  et al.  The  effects  of
                   and  cushioning  coefficient-strain  curves  of  SF/   phosphorus-based  flame  retardants  and  octaphenyl  polyhedral
                   HGB6 and EPE before and after fatigue test      oligomeric  silsesquioxane  on  the  ablative  and  flame-retardation
                                                                   properties of room temperature vulcanized silicone rubber insulating
                                                                   composites[J].  Polymer  Degradation  and  Stability,  2016,  125:
                                                                   140-147.
            3   结论                                             [9]   YAN  H,  WANG  K,  ZHAO  Y.  Fabrication  of  silicone  rubber  foam
                                                                   with  tailored  porous  structures  by  supercritical  CO 2[J].
                (1)采用室温硫化法制备了 SF/HGB 复合材料,                         Macromolecular Materials and Engineering, 2016, 302(2): 1-11.
                                                               [10]  XIANG  B,  JIA  Y  L,  LEI  Y  J,  et al.  Mechanical  properties  of
            结果表明,HGB 用量对 SF/HGB 复合材料的泡孔结
                                                                   microcellular  and  nanocellular  silicone  rubber  foams  obtained  by
            构及性能存在较大影响。                                            supercritical  carbon  dioxide[J].  Polymer  Journal,  2019,  51(6):
                                                                   559-568.
                (2)通过对 SF/HGB 复合材料的交联密度、泡
                                                               [11]  YANG Q, YU H T, SONG L X, et al. Solid-state microcellular high
            孔结构、机械性能、动态力学性能的研究,发现 HGB                              temperature  vulcanized  (HTV)  silicone  rubber  foam  with  carbon
            质量分数为 6.0%时,复合材料具有最佳的综合性                               dioxide[J]. Journal of Applied Polymer Science, 2017, 134(20): 1-7.
                                                               [12]  LIAO X, XU H, LI S J, et al. The effects of viscoelastic properties on
            能。                                                     the  cellular  morphology  of  silicone  rubber  foams  generated  by
                (3)通过静态压缩实验研究了 SF/HGB6 复合材                         supercritical  carbon  dioxide[J].  RSC  Advances,  2015,  129(5):
                                                                   106981-106988.
            料的缓冲性能,SF/HGB6 复合材料的缓冲系数与                          [13]  TANG W Y, LIAO X, ZHANG Y, et al. Mechanical-microstructure
            EPE 非常接近。                                              relationship and cellular failure mechanism of silicone rubber foam
                                                                   by the cell microstructure designed in supercritical CO 2[J]. Journal of
                (4)采用动态压缩疲劳实验研究了 SF/HGB6
                                                                   Physical Chemistry C, 2019, 123(44): 26947-26956.
            复合材料的疲劳性能,SF/HGB6 复合材料的疲劳次                         [14]  GUO C,  KONDO Y,  TAKAI C, et al. Piezoresistivities of vapor-
                                                                   grown carbon fiber/silicone foams for tactile sensor applications[J].
            数达到 600 万次,疲劳实验后 SF/HGB6 复合材料的
                                                                   Polymer International, 2017, 66(3): 418-427.
            高度保持率为 98.4%,远大于 EPE 材料(29 万次,                     [15]  LIU B, WANG P C, AO Y Y, et al. Effects of combined neutron and
   131   132   133   134   135   136   137   138   139   140   141