Page 225 - 《精细化工》2020年第9期
P. 225
第 9 期 冯宪明,等: 中间苍白杆菌对含蜡原油除蜡降黏效果分析 ·1939·
蜡峰温降低 0.32 ℃,有效改变蜡晶性质,能够提高 [15] BEZZA F A, CHIRWA E M N. Production and applications of
lipopeptide biosurfactant for bioremediation and oil recovery by
原油低温流动性能,降黏率在 21%以上。 Bacillus subtilis CN2[J]. Biochemical Engineering Journal, 2015,
101: 168-178.
(3)菌株 F-1 能够产生促进原油中蜡质降解的 [16] MAZAHERI A M, TABATABAEE M S. Biosurfactants and their use
生物表面活性剂,且具有较高表面活性。通过傅里叶 in upgrading petroleum vacuum distillation residue: A review[J].
International Journal of Environmental Research, 2010, 4(4): 549-572.
变换红外光谱鉴定该菌产生的生物表面活性剂为脂 [17] DOMINGUES P M, ALMEIDA A, LEAL L S, et al. Bacterial
肽类化合物。能够形成 91.49 mm 排油圈,具有较高 production of biosurfactants under microaerobic and anaerobic
conditions[J]. Reviews in Environmental Science and Bio/Technology,
的界面活性。能将表面张力从 76.89 mN/m 降低至 2017, 16(2): 239-272.
[18] DENG S P, HUANG D S. An integrated strategy for functional
39.96 mN/m,对正癸烷、正十四烷及液体石蜡的乳 analysis of microbial communities based on gene ontology and 16S
化活性分别可达 53.75%、52.50%和 65.00%。 rRNA gene[J]. Energy Procedia, 2015, 13(1): 63-74.
[19] BHARALI P, DAS S, KONWAR B K, et al. Crude biosurfactant
(4)将微生物作用于含蜡原油具有除蜡降黏效 from thermophilic Alcaligenes faecalis: Feasibility in petro-spill
bioremediation[J]. International Biodeterioration & Biodegradation,
果,从根本上消除蜡质带来的不利影响。后续可采 2011, 65(5): 682-690.
用气相色谱-质谱仪联用确定出菌株对石蜡降解产 [20] SAKTHIPRIYA N, DOUBLE M, SANGWAI J S. Biosurfactant from
Pseudomonas species with waxes as carbon source—Their production,
物的具体信息,明确微生物除蜡降黏的机理,便于 modeling and properties[J]. Journal of Industrial and Engineering
Chemistry, 2015, 31: 100-111.
与其他菌种复配使用,使其除蜡降黏效果发挥到最 [21] El-SHESHTAWY H S, KHIDR T T. Some biosurfactants used as pour
佳。本菌株可望用于原油集输站场储油罐中,在罐 point depressant for waxy egyptian crude oil[J]. Petroleum Science
and Technology, 2016, 34(16): 1475-1482.
中对原油进行有氧处理。 [22] PAVITRAN S, BALASUBRAMANIAN S, KUMAR P, et al.
Emulsification and utilization of high-speed diesel by a Brevibacterium
参考文献: species isolated from hydraulic oil[J]. World Journal of Microbiology
and Biotechnology, 2004, 20(8): 811-816.
[1] HUANG Q Y (黄启玉), LI Y X (李瑜仙), ZHANG J J (张劲军). [23] OLUKUNLE O, BABAJIDE O, BOBOYE B. Effects of temperature
Unified wax deposition model[J]. Acta Petrolei Sinica (石油学报), and pH on the activities of catechol 2, 3-dioxygenase obtained from
2008, 29(3): 459-462. crude oil contaminated soil in Ilaje, Ondo State, Nigeria[J]. The Open
[2] WANG W Q (王卫强), CUI J (崔静), WU S S (吴尚书), et al. Effect Microbiology Journal, 2015, 9: 84-90.
of compound bacteria on wax removal and viscosity reduction of [24] YAO B, WEI X W, LIU H W, et al. Effects of soil pH regulators on soil
crude oil[J]. Fine Chemicals (精细化工), 2019, 36(11): 2317-2322. microbial biomass in atrazine-contaminated soil by dendroremediation
[3] SAKTHIPRIYA N, DOUBLE M, SANGWAI J S. Fast degradation of poplar[J]. Environmental Science & Technology, 2011, 34(12):
and viscosity reduction of waxy crude oil and mode lwaxy crude oil 105-109.
using Bacillus subtilis [J ] .Journal of Petroleum Science and [25] CHAKRABORTY S, MUKHERJI S. Surface hydrophobicity of
Engineering,2015,134:158-166. petroleum hydrocarbon degrading Burkholderia strains and their
[4] LIU J H, CHEN Y T, XU R D, et al. Microbial paraffin-removal interactions with NAPLs and surfaces[J]. Colloids and Surfaces B:
technology using araffin-degrading and biosurfactant-producing Biointerfaces, 2010, 78(1): 101-108.
strain[J]. Asian Journal of Chemistry, 2014, 26(10): 2957-2959. [26] WANG J (王靖), LIU Y Q (刘元琴), JIANG K (姜凯), et al.
[5] FERRADJI F Z, MNIF S, BADIS A, et al. Naphthalene and crude oil Metablizable characteristics and uptaking-alkane mechanism of paraffin
degradation by biosurfactant producing Streptomyces spp. isolated thirsty bacteria R[J]. Journal of China University of Petroleum (中国
from Mitidja plain soil (North of Algeria)[J]. International 石油大学学报), 2007, 31(3): 143-147.
Biodeterioration & Biodegradation, 2014, 86: 300-308. [27] ZHANG F, SHE Y H, BANAT I M, et al. Potential microorganisms
[6] HAO D H, LIN J Q, SONG X, et al. Isolation, identification, and for prevention of paraffin precipitation in a hypersaline oil reservoir
performance studies of a novel paraffin-degrading bacterium of [J]. Energy & Fuels, 2014, 28(2): 1191-1197.
Gordonia amicalis LH3[J]. Biotechnology and Bioprocess Engineering. [28] LIANG X L, SHI R J, RADOSEVICH M, et al. Anaerobic
2008, 13: 61-68. lipopeptide biosurfactant production by an engineered bacterial strain
[7] MISHRA S, SINGH S N. Microbial degradation of n-hexadecane in for in situ microbial enhanced oil recovery[J]. RSC Advance, 2017,
mineral salt medium as mediated by degradative enzymes[J]. Bioresource 7(33): 20667-20676.
Technology, 2012, 111: 148-154. [29] SAKTHIPRIYA N, DOUBLE M, SANGWAI J S. Efficacy of Bacillus
[8] SAKTHIPRIYA N, DOUBLE M, SANGWAI J S. Bioremediation of subtilis for the biodegradation and viscosity reduction of waxy crude
coastal and marine pollution due to crude oil using a microorganism oil for enhanced oil recovery from mature reservoirs[J]. Energy
Bacillus subtilis[J]. Procedia Engineering, 2015, 116: 213-220. Sources, Part A: Recovery, Utilization, and Environmental Effects,
[9] SAKTHIPRIYA N, DOUBLE M, SANGWAI J S. Action of 2016, 38(16): 2327-2335.
biosurfactant producing thermophilic Bacillus subtilis on waxy crude [30] APARNA A, SRINIKETHAN G, HEDGE S. Effect of addition of
oil and long chain paraffins[J]. International Biodeterioration & biosurfactant produced by Pseudomonas sp. on biodegradation of
Biodegradation, 2015, 105: 168-177. crude oil[J]. International Proceedings of Chemical, Biological &
[10] ZHOU J F, GAO P K, DAI X H, et al. Heavy hydrocarbon degradation Environmental Engineering, 2011, 6: 71-75.
of crude oil by a novel thermophilic Geobacillus stearothermophilus [31] BEZZA F A, BEUKES M, CHIRWA E M N. Application of
strain A-2[J]. International Biodeterioration & Biodegradation, 2018, biosurfactant produced by Ochrobactrum intermedium CN3 for
126: 224-230. enhancing petroleum sludge bioremediation[J]. Process Biochemistry,
[11] MARCHANT R, BANAT I M. Biosurfactants: A sustainable 2015, 50(11): 1911-1922.
replacement for chemical surfactants?[J]. Biotechnology Letters, [32] LIU J H, JIA Y P, XU R D. Microbial prevention of wax deposition
2012, 34(9): 1597-1605. in crude oil[J]. Advanced Materials Research, 2012, 550/551/552/553:
[12] PACWA-PLOCINICZAK M, PLAZA G A, PIOTROWAKA-SEGET 1364-1368.
Z, et al. Environmental applications of biosurfactants: Recent advances [33] LI H Y (李鸿英),ZHANG J J (张劲军). Effect of wax on rheological
[J]. International Journal of Molecular Sciences, 2011, 12(1): 633-654. properties of crude oil[J]. Oil & Gas Storage and Transportation (油
[13] ZHANG J H, LAI H X, GAO H, et al. Prevention and mitigation of 气储运), 2002, 21(11): 6-12.
paraffin deposition by biosurfactant-producing and paraffin-degrading [34] ZHANG H (张红), SHEN B X (沈本贤). Effect of wax crystal
Bacillus amyloliquefaciens strain 6-2c[J]. Chemical Engineering morphology on the pour point decline of crude oil[J]. Acta Petrolei
Journal, 2018, 335: 510-519. Sinica (Petroleum Processing Section)〔石油学报(石油加工)〕, 2006,
[14] LIU W J, DUAN X D, WU L P, et al. Biosurfactant production by 22(5): 74-79.
Pseudomonas aeruginosa SNP0614 and its effect on biodegradation [35] ETOUMI A. Microbial treatment of waxy crude oils for mitigation of
of petroleum[J]. Applied Biochemistry and Microbiology, 2018, wax precipitation[J]. Journal of Petroleum Science & Engineering,
54(2): 155-162. 2007, 55(1/2): 111-121.