Page 100 - 《精细化工》2021年第1期
P. 100
·90· 精细化工 FINE CHEMICALS 第 38 卷
on the synergetic effect of adsorptionfor removal of dyes from waste Analyst, 2014, 140(2): 637-643.
water using photocatalytic process[J]. Journal of Environmental [17] LI X W, WANG B, HUANG Y H, et al. Boosting photocatalytic
Sciences, 2018, 65(3): 201-222. degradation of RhB via interfacial electronic effects between
[4] ZHOU C, SHI R, SHANG L, et al. Template-free large-scale synthesis Fe-based ionic liquid and g-C 3N 4[J]. Green Energy and Environment,
of g-C 3N 4 microtubes for enhanced visible light-driven photocatalytic 2019, 4(2): 198-206.
H 2 production[J]. Nano Research, 2018, 11(6): 3462-3468. [18] HAFEEZ H Y, LAKHERA S K, BELLAMKONDA S, et al.
[5] YAN Q, HUANG G F, LI D F, et al. Facile synthesis and superior Construction of ternary hybrid layered reduced graphene oxide
photocatalytic and electrocatalytic performances of porous B-doped supported g-C 3N 4-TiO 2 nanocomposite and its photocatalytic hydrogen
g-C 3N 4 nanosheets[J]. Journal of Materials Science and Technology, production activity[J]. International Journal of Hydrogen Energy,
2018, 34(12): 2515-2520. 2018, 43: 3892-3904.
[6] GAN H H, YI F T, ZANG H N, et al. Facile ultrasonic-assisted [19] YU Q B (于清波), WANG Q H (王青海), ZHAO Q Y (赵青杨), et
synthesis of micro-nanosheet structure Bi 4Ti 3O 12/g-C 3N 4 composites al. Preparation of Au/g-C 3N 4 nanocomposite and research on surface
with enhanced photocatalytic activity on organic pollutants[J]. enhanced raman properties[J]. New Chemical Materials (化工新型材
Chinese Journal of Chemical Engineering, 2018, 26(12): 2628-2635. 料), 2016, 44(6): 95-100.
[7] YU J G, WANG K, XIAO W, et al. Photocatalytic reduction of CO 2 [20] YANG X F (杨薛峰), MA T (马涛), SHEN Q Q (申倩倩), et al.
into hydrocarbon solar fuels over g-C 3N 4-Pt nanocomposite Preparation of g-C 3N 4 nanosheets by acidification method and their
photocatalysts[J]. Physical Chemistry Chemical Physics, 2014, photocatalytic performance[J]. Journal of Synthetic Crystals (人工晶
16(23): 11492-11501. 体学报), 2018, 47(4): 703-708.
[8] TANG M Y (汤梦瑶), LU Z X (陆紫馨), XU C (徐晨), et al. Research [21] LIU Q, ZHU D B, GUO M L, et al. Facile and efficient fabrication of
progress in preparation and modification of g-C 3N 4 photocatalyst[J]. g-C 3N 4 quantum dots for fluorescent analysis of trace copper(Ⅱ) in
Shandong Chemical Industry (山东化工), 2019, 48(14): 78-80. environmental samples[J]. Chinese Chemical Letters, 2019, 30(9):
[9] NIU J Y (牛金叶), XIE Y (谢艺), WANG L Y (王璐瑶), et al. 1639-1642.
Preparation of graphite carbon nitride with high specific surface area [22] XU H Y, WU L C, JIN L G, et al. Combination mechanism and
and its photocatalytic application[J]. Journal of Sichuan University enhanced visible-light photocatalytic activity and stability of
(四川大学学报), 2018, 55(5): 177-187. CdS/g-C 3N 4 heterojunctions[J]. Journal of Materials Science and
[10] XU J, ZHANG L W, SHI R, et al. Chemical exfoliation of graphitic Technology, 2017, 33(1): 30-38.
carbon nitride for efficient heterogeneous photocatalysis[J]. Journal [23] CHENG F Y, YIN H, XIANG Q J. Low-temperature solid-state
of Materials Chemistry, 2013, 1(46): 14766-14772. preparation of ternary CdS/g-C 3N 4/CuS nanocomposites for enhanced
[11] SANO T, TSUTSUI S, KOIKE K, et al. Activation of graphitic visible-light photocatalytic H 2-production activity[J]. Applied
carbon nitride (g-C 3N 4) by alkaline hydrothermal treatment for Surface Science, 2017, 391: 432-439.
photocatalytic NO oxidation in gas phase[J]. Journal of Materials [24] CHEN Y F, HUANG W X, HE D L, et al. Construction of
Chemistry, 2013, 1(21): 6489-6496. heterostructured g-C 3N 4/Ag/TiO 2 microspheres with enhanced
[12] YAN X (阎鑫), HUI X Y (惠小艳), YAN C X (闫从祥), et al. photocatalysis performance under visible-light irradiation[J]. ACS
Preparation of graphite-like carbon nitride two-dimensional nanosheets Applied Materials and Interfaces, 2014, 6(16): 14405-14414.
and study on their visible light catalytic performance[J]. Materials [25] WANG P (王鹏), WEI X F (魏晓芳), TIAN L (田林), et al. Effect of
Reports (材料导报), 2017, 31(5): 77-80. Fe doping on improving the structure of g-C 3N 4 for photocatalytic
[13] DING W, LIU S Q, HE Z. One-step synthesis of graphitic carbon activity[J]. Journal of Synthetic Crystals (人工晶体学报), 2019,
nitride nanosheets for efficient catalysis of phenol removal under 48(2): 286-292.
visible light[J]. Chinese Journal of Catalysis, 2017, 38(10): 1711-1718. [26] LI J J (李娇娇), ZHAO W F (赵卫峰), ZHANG G (张改), et al.
[14] HUANG Z A, SUN Q, LV K L, et al. Effect of contact interface Study on the rapid preparation of protonated g-C 3N 4 nanoribbons by
between TiO 2 and g-C 3N 4 on the photoreactivity of g-C 3N 4/TiO 2 concentrated sulfuric acid method and their photocatalytic degradation
photocatalyst: (001) vs (101) facets of TiO 2[J]. Applied Catalysis B: of organic dyes[J]. Chemical Journal of Chinese Universities (高等
Environmental, 2015, 164: 420-427. 学校化学学报), 2018, 39(12): 2719-2724.
[15] ZHANG J S (张金水), WANG B (王博), WANG X C (王心晨). [27] ZHAO S S, CHEN S, YU H T, et al. g-C 3N 4/TiO 2 hybrid photocatalyst
Chemical synthesis and application of graphite phase carbon nitride[J]. with wide absorption wavelength range and effective photogenerated
Journal of Physical Chemistry (物理化学学报), 2013, 29(9): 1865- charge separation[J]. Separation and Purification Technology, 2012,
1876. 99: 50-54.
[16] CHEN H Y, RUAN L W, JIANG X, et al. Trace detection of nitro [28] LOW J X, YU J G, JARONIEC M, et al. Heterojunction
aromatic explosives by highly fluorescent g-C 3N 4 nanosheets[J]. photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694.