Page 102 - 《精细化工》2021年第10期
P. 102
·2032· 精细化工 FINE CHEMICALS 第 38 卷
抗污染测试,结果见图 11。由图 11 可见,MB 溶液 的相容性,提高了 PA 分离层的交联度,进一步显
经过复合纳滤膜过滤后,滤出液均为无色,说明复 著提高了复合纳滤膜的脱盐性能。在 0.6 MPa 下,
合纳滤膜对 MB 具有较好的截留效果。复合纳滤膜 复合纳滤膜 PA-2 的 PA 分离层厚度显著降低,纯水
2
的通量恢复率、通量衰减率、不可逆通量衰减率及 通量可达 24.05 L/(m ·h),对 MgSO 4 、Na 2 SO 4 、NaCl
可逆通量衰减率的计算结果见表 5。由于静电吸附 和 MgCl 2 均具有较高的截留率,分别为 97.34%、
作用,复合纳滤膜 PA-1 和 PA-2 经过 8 h MB 溶液过 93.57%、89.31%和 85.16%。此外,复合纳滤膜 PA-2
滤后,水通量均有所下降,通量恢复率分别为 的表面负电荷密度低于 PA-1,经过 8 h MB 溶液污
96.70%和 98.82%,通量衰减率分别 为 6.50%和 染并采用超纯水对其进行错流清洗后,PA-2 的通量
10.82%。经过超纯水对复合纳滤膜进行 2 h 的错流 恢复率高于 PA-1,具有更优异的抗污染性能。
清洗后,PA-1、PA-2 的水通量均得到一定恢复,可
参考文献:
逆通量恢复率分别为 3.21%、9.64%,不可逆通量恢
[1] CHEN Y L, LIU F, WANG Y, et al. A tight nanofiltration membrane
复率分别为 3.29%、1.18%。由上述测试结果可知,
with multi-charged nanofilms for high rejection to concentrated salts[J].
MB 对复合纳滤膜 PA-2 的污染主要为可逆污染,其 Journal of Membrane Science, 2017, 537: 407-415.
通量恢复率远高于 PA-1。结合 Zeta 电位测试结果可 [2] PENG H W, TANG Q Q, TANG S H, et al. Surface modified
polyamide nanofiltration membranes with high permeability and
知,复合纳滤膜 PA-2 的表面负电荷密度低于 PA-1, stability[J]. Journal of Membrane Science, 2019, 592: 117386.
因此,PA-2 与 MB 的静电吸附作用较弱,其表面吸 [3] XU Z H (许中煌), LEI P P (雷萍萍), HONG Y B (洪昱斌), et al.
Preparation and performance of graphene oxide/basic aluminum sulfate
附的 MB 更容易被去除,因此,具有更优异的抗污
doped polyethersulfone/polyamide composite nanofiltration membrane[J].
染性能。 CIESC Journal (化工学报), 2018, 69(9): 4066-4074.
[4] WANG J (汪菊), NIU S F (牛淑锋), FEI Y (费莹), et al. Fabrication
and stability of GO/Al 2O 3 composite nanofiltration membranes[J].
CIESC Journal (化工学报), 2020, 71(6): 2795-2803.
[5] SHI Z (石紫), WANG Z (王志), WANG C (王宠), et al. Research
progress in the preparation of organic nanofiltration membranes for
dye separation[J]. Membrane Science and Technology (膜科学与技
术), 2020, 40(1): 340-351.
[6] HUANG B Q, TANG Y J, ZENG Z X, et al. Microwave heating
assistant preparation of high permselectivity polypiperazine-amide
nanofiltration membrane during the interfacial polymerization process
with low monomer concentration[J]. Journal of Membrane Science,
2020, 596: 117718.
[7] ESFAHANI M R, AKTIJ S A, DABAGHIAN Z, et al. Nanocomposite
membranes for water separation and purification: Fabrication,
图 11 复合纳滤膜的抗 MB 污染性能 modification, and applications[J]. Separation and Purification
Technology, 2019, 213: 465-499.
Fig. 11 Antifouling performance of composite nanofiltration
membranes for MB [8] EKAMBARAM K, DORAISAMY M. Fouling resistant PVDF/
carboxymethyl chitosan composite nanofiltration membranes for
humic acid removal[J]. Carbohydrate Polymers, 2017, 173: 431-440.
表 5 复合纳滤膜的抗污染指数 [9] JI D W, XIAO C F, ZHAO J, et al. Green preparation of polyvinylidene
Table 5 Antifouling index of composite nanofiltration fluoride loose nanofiltration hollow fiber membranes with multilayer
membranes tested with MB solution structure for treating textile wastewater[J]. Science of Total
Environment, 2021, 754: 141848.
抗污染指数/% PA-1 PA-2
[10] KANG D D, SHAO H J, CHEN G J, et al. Fabrication of highly
FRR 96.70 98.82 permeable PVDF loose nanofiltration composite membranes for the
R t 6.50 10.82 effective separation of dye/salt mixtures[J]. Journal of Membrane
R ir 3.29 1.18 Science, 2021, 621: 118951.
[11] KADHOM M, DENG B L. Metal-organic frameworks (MOFs) in
R r 3.21 9.64
water filtration membranes for desalination and other applications[J].
Applied Materials Today, 2018, 11: 219-230.
[12] SUN Y X (孙亚昕), ZHANG X L (张秀玲), XI H L (习海玲), et al.
3 结论 Research progress of metal-organic frame-based flexible composites[J].
Fine Chemicals (精细化工), 2020, 37(7): 1334-1342.
本文采用反向扩散法在 PVDF 膜表面原位生长 [13] LI X, LIU Y X, WANG J, et al. Metal-organic frameworks based
membranes for liquid separation[J]. Chemical Society Reviews,
ZIF-8 纳米晶,并进一步进行界面聚合反应,成功制
2017, 46: 7124.
备了高性能的复合纳滤膜 PA-1、PA-2。结果表明, [14] BASU S, BALAKRISHNAN M. Polyamide thin film composite
纳米 ZIF-8 亚层的生长提高了 MPD 单体与 PVDF 基 membranes containing ZIF-8 for the separation of pharmaceutical
compounds from aqueous streams[J]. Separation and Purification
膜表面的亲和力,改善了 PA 分离层与 PVDF 基膜 Technology, 2017, 179: 118-125.