Page 103 - 《精细化工》2021年第10期
P. 103
第 10 期 韩长秀,等: PA/ZIF-8/PVDF 复合纳滤膜的制备及其性能 ·2033·
[15] DUAN J T, PAN Y C, PACHECO F, et al. High-performance mixed matrix membranes embedded with size-controlled ZIF-8
polyamide thin-film-nanocomposite reverse osmosis membranes nanoparticles[J]. Separation and Purification Technology, 2019, 229:
containing hydrophobic zeolitic imidazolate framework-8[J]. Journal 115838.
of Membrane Science, 2015, 476: 303-310. [25] GAO Y B (高钰冰), WU L P (伍丽萍), GAI J G (盖景刚). Dopamine
[16] MA Y N, SUN Y X, YIN J, et al. A MOF membrane with ultrathin composite nanofiltration membrane with high solvent resistance and
ZIF-8 layer bonded on ZIF-8 in-situ embedded PSF substrate[J]. stability[J]. Polymer Materials Science and Engineering (高分子材
Journal of the Taiwan Institute of Chemical Engineers, 2019, 料科学与工程), 2019, 35(5): 164-170.
104: 273-283. [26] SORRIBAS S, GORGOJO P, TELLEZ C, et al. High flux thin film
[17] WANG L Y, FANG M Q, LIU J, et al. Layer-by-layer fabrication of nanocomposite membranes based on metal-organic frameworks for
high-performance polyamide/ZIF-8 nanocomposite membrane for organic solvent nanofiltration[J]. Journal of the American Chemical
nanofiltration applications[J]. ACS Applied Materials & Interfaces, Society, 2013, 135: 15201-15208.
2015, 7: 24082-24093. [27] SHEN K, CHENG C, ZHANG T H, et al. High performance
[18] YAO J F, DONG D H, LI D, et al. Contra-diffusion synthesis of polyamide composite nanofiltration membranes via reverse interfacial
ZIF-8 films on a polymer substrate[J]. Chemical communications, polymerization with the synergistic interaction of gelatin interlayer
2011, 47: 2559-2561. and trimesoyl chloride[J]. Journal of Membrane Science, 2019, 588:
[19] KARIMI A, VATANPOUR V, KHATAEE A, et al. Contra-diffusion 117192.
synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration [28] WANG F H, ZHENG T, XIONG R H, et al. Strong improvement of
membranes for improved water purification[J]. Journal of Industrial reverse osmosis polyamide membrane performance by addition of
and Engineering Chemistry, 2019, 73: 95-105. ZIF-8 nanoparticles: Effect of particle size and dispersion in selective
[20] TAO G L (陶国良), WANG H Q (王海琴), LIAO X J (廖小军), layer[J]. Chemosphere, 2019, 233: 524-531.
et al. The effects of the amphiphilic copolymer MMA-co-AA on [29] ZHU S, ZHAO S, WANG Z, et al. Improved performance of
microstructure and properties of PVDF membranes[J]. Polymer polyamide thin-film composite nanofiltration membrane by using
Materials Science and Engineering (高分子材料科学与工程), 2014, polyetersulfone/polyaniline membrane as the substrate[J]. Journal of
30(1): 58-61. Membrane Science, 2015, 493: 263-274.
[21] LEE T H, OH J Y, HONG S P, et al. ZIF-8 particle size effects on [30] LIU Y L, WANG X M, GAO X Q, et al. High-performance thin film
reverse osmosis performance of polyamide thin-film nanocomposite nanocomposite membranes enabled by nanomaterials with different
membranes: Importance of particle deposition[J]. Journal of Membrane dimensions for nanofiltration[J]. Journal of Membrane Science, 2020,
Science, 2018, 570/571: 23-33. 596: 117717.
[22] WANG K (王凯), WANG D W (王德武), HOU D Y (侯得印), [31] REN L, CHEN J X, LU Q, et al. Construction of high selectivity and
et al. Fabrication of PVDF-SiO 2/PVSQ superhydrophobic composite antifouling nanofiltration membrane via incorporating macrocyclic
membrane via self-assembly with anti-fouling property for membrane molecules into active layer[J]. Journal of Membrane Science, 2020,
distillation[J]. CIESC Journal (化工学报), 2019, 70(1): 298-308. 597: 117641.
[23] LI Y B, WEE L H, MARTENS J A, et al. Interfacial synthesis of [32] KANG Y, OBAID M, JANG J, et al. Sulfonated graphene oxide
ZIF-8 membranes with improved nanofiltration performance[J]. incorporated thin film nanocomposite nanofiltration membrane to
Journal of Membrane Science, 2017, 523: 561-566. enhance permeation and antifouling properties[J]. Desalination,
[24] KARIMI A, KHATAEE A, VATANPOUR V, et al. High-flux PVDF 2019, 470: 114125.
(上接第 2024 页) activities: A comprehensive review[J]. Carbohydrate Polymers, 2018,
[18] DONG W K, LU Y S, WANG W B, et al. A sustainable approach to 184: 243-259.
fabricate new 1D and 2D nanomaterials from natural abundant [24] OUSSALAH M, CAILLET S, LACROIX M. Mechanism of action
palygorskite clay for antibacterial and adsorption[J]. Chemical of Spanish oregano, Chinese cinnamon, and savory essential oils
Engineering Journal, 2020, 382: 122984. against cell membranes and walls of Escherichia coli O157:H7 and
[19] GEULI O, LEWINSTEIN I, MANDLER D. Composition-tailoring Listeria monocytogenes[J]. Journal of Food Protection, 2006, 69:
of ZnO-hydroxyapatite nanocomposite as bioactive and antibacterial 1046-1055.
coating[J]. ACS Appllied Nano Materials, 2019, 2: 2946-2957. [25] OCHIR S (萨仁高娃), HU W Z(胡文忠), FENG K (冯可), et al.
[20] ZHANG Y, WANG W B, MU B, et al. Effect of grinding time on Antimicrobial mechanisms of essential oils and their components on
fabricating a stable methylene blue/palygorskite hybrid nanocomposite[J]. pathogenic bacteria: A Review[J]. Food Science (食品科学), 2020,
Powder Technology, 2015, 280: 173-179. 41(11): 285-294.
[21] GAO L J (高灵娟). Study on preparation and antibacterial properties [26] WU T, XIE A G, TAN S Z, et al. Antimicrobial effects of quaternary
of montmorillonite-based organic/inorganic composites antibacterial phosphonium salt intercalated clay minerals on Escherichia coli and
materials[D]. Ningxia: Ningxia University (宁夏大学), 2019. Staphylococci aureus[J]. Colloids and Surfaces B: Biointerfaces,
[22] PANDIT S, KARUNAKARAN S, BODA S, et al. High antibacterial 2011, 86: 232-236.
activity of functionalized chemically exfoliated MoS 2[J]. ACS [27] WEI T ( 韦婷 ). Smart antibacterial surfaces with switchable
Applied Materials & Interfaces, 2016, 8: 31567-31573. bacteria-killing and bacteria-releasing capabilities[D]. Suzhou:
[23] LIAQAT F, ELTEM R. Chitooligosaccharides and their biological Soochow University (苏州大学), 2019.