Page 119 - 《精细化工》2021年第10期
P. 119

第 10 期                  于丹凤,等: SiO 2 改性聚丙烯纤维棉对油水乳状液的高效分离                                ·2049·


                 Nature Communications, 2018, 9(1): 2004.      [19]  SHANG  Q Z (尚茜子), ZHANG B  Q (张宝泉), LI Y (李云).
            [6]   LIU M J, WANG  S T, JIANG L.  Nature-inspired  superwettability   Fabrication  of stainless steel  mesh supported zeolite Al-beta  coatings
                 systems[J]. Nature Reviews Materials, 2017, 2(7): 17036.   for oil/water separation[J]. CIESC Journal (化工学报), 2019, 70(10):
            [7]   LI W T (李文涛), YONG J L (雍佳乐), YANG Q (杨青), et al. Oil-   3994-4001.
                 water separation based on the materials with special wettability[J].   [20]  SONG B T, XU Q. Highly hydrophobic and superoleophilic nanofibrous
                 Acta Physico-Chimica Sinica (物理化学学报), 2018, 34(5): 456-   mats with controllable pore sizes for efficient oil/water separation[J].
                 475.                                              Langmuir, 2016, 32(39): 9960-9966.
            [8]   HOU X, HU Y H, GRINTHAL A, et al. Liquid-based gating mechanism   [21]  HAO L, JIANG B, ZHANG L H, et al. Efficient demulsification of
                 with tunable multiphase selectivity and antifouling  behaviour[J].   diesel-in-water emulsions by different structural  dendrimer-based
                 Nature, 2015, 519: 70-73.                         demulsifiers[J]. Industrial & Engineering Chemistry Research, 2016,
            [9]   XU B B (徐兵兵), WANG B (王斌), HUANG  Y W  (黄月文).    55(6): 1748-1759.
                 Preparaion and performance of fluorine-free auperhydrophobic coatings   [22]  KONG W T, PAN Y L, BHUSHAN B, et al. Superhydrophilic Al 2O 3
                 based on modified silica and polysiloxane[J]. Fine Chemicals (精细  particle layer for  efficient separation of  oil-in-water (O/W) and
                 化工), 2019, 36(10): 2009-2015.                     water-in-oil (W/O) emulsions[J]. Langmuir, 2020, 36(44):
            [10]  LIU P S, NIU L Y, TAO X H, et al. Preparation of superhydrophobic-   13285-13291.
                 oleophilic quartz sand filter and its application in oil-water separation [J].   [23]  WANG B, MAHMOOD A, CHEN L, et al. Under-oil superhydrophilic
                 Applied Surface Science, 2018, 447: 656-663.      salt particle filter for the efficient separation of water-in-oil emulsions
            [11]  CAI Y H, CHEN D Y, LI N J, et al. A self-cleaning heterostructured   [J]. Chemical Communication, 2020, 56(78): 11585-11588.
                 membrane for efficient oil-in-water emulsion separation with stable   [24]  LI J, XU C C, GUO C Q, et al. Underoil superhydrophilic desert sand
                 flux[J]. Advanced Materials, 2020, 32(25): e2001265.   layer for efficient gravity-directed water-in-oil emulsions separation
            [12]  CHEN C L, WENG D, MAHMOOD A, et al. Separation mechanism   with high flux[J]. Journal of Materials Chemistry A, 2018, 6(1): 223-
                 and construction of surfaces with special  wettability for oil/water   230.
                 separation[J]. ACS Applied Materials & Interfaces, 2019, 11(11):   [25]  ZENG X J, QIAN L, YUAN X X, et al. Inspired by stenocara beetles:
                 11006-11027.                                      From water collection to high-efficiency  water-in-oil emulsion
            [13]  CHEN L W, SI Y F, ZHU H, et al. A study on the fabrication of porous   separation[J]. ACS Nano, 2017, 11(1): 760-769.
                 PVDF membranes  by  in-situ  elimination and their applications in   [26]  CHEN  C L, CHEN S, CHEN L, et  al. Underoil  superhydrophilic
                 separating  oil/water mixtures and  nano-emulsions[J]. Journal of   metal felt fabricated by modifying ultrathin fumed silica coatings for
                 Membrane Science, 2016, 520: 760-768.             the separation of water-in-oil emulsions[J]. ACS Applied Materials &
            [14]  CHEN S Q, LV C Y, HAO K, et al. Multifunctional negatively-charged   Interfaces, 2020, 12(24): 27663-27671.
                 poly(ether sulfone) nanofibrous membrane for water remediation[J].   [27]  YUE X J, LI W Y, LI Z D, et al. Laminated superwetting aerogel/
                 Journal of Colloid and Interface Science, 2018, 538: 648-659.   membrane composite with large pore sizes for efficient separation of
            [15]  XUE Z X, WANG S T, LIN L, et al. A Novel superhydrophilic and   surfactant-stabilized water-in-oil emulsions[J]. Chemical Engineering
                 underwater superoleophobic hydrogel-coated mesh for oil/water   Science, 2020, 215: 115450.
                 separation[J]. Advanced Materials, 2011, 23(37): 4270-4273.   [28]  ZHANG J X, ZHU L N, ZHAO S Y, et al. A robust and repairable
            [16]  ZHU Y Z, WANG J L, ZHANG F, et al. Zwitterionic nanohydrogel   copper-based superhydrophobic microfiltration membrane for high-
                 grafted PVDF membranes with comprehensive antifouling property   efficiency water-in-oil emulsion  separation[J]. Separation and
                 and superior cycle  stability for oil-in-water  emulsion separation[J].   Purification Technology, 2021, 256: 117751.
                 Advanced Functional Materials, 2018, 28(40): 1804121.   [29]  EJETA  D D, WANG C F, KUO  S W, et al. Preparation of
            [17]  YUE  X J,  LI Z  D, ZHANG T, et  al. Design and fabrication of   superhydrophobic and superoleophilic cotton-based material for
                 superwetting fiber-based membranes for oil/water separation   extremely high flux water-in-oil emulsion separation[J].  Chemical
                 applications[J]. Chemical Engineering Journal, 2019, 364: 292-309.   Engineering Journal, 2020, 402: 126289.
            [18]  YUAN X, NIE W C, XU C, et al. From fragility to  flexibility:   [30]  ASAD A, RASTGAR M, SAMEOTO D, et al. Gravity assisted super
                 Construction  of hydrogel bridges toward a flexible multifunctional   high flux microfiltration polyamide-imide  membranes for oil/water
                 free standing CaCO 3 film[J]. Advanced Functional Materials, 2018,   emulsion separation[J]. Journal of  Membrane Science,  2021,  621:
                 28(5): 1704956.                                   119019.


            (上接第 2041 页)                                           living cells[J]. Journal of Photochemistry and Photobiology A:
                                                                   Chemistry, 2017, 335: 1-9.
            [56]  GUO M M, DONG P Y, FENG Y, et al. A two-photon fluorescent   [60]  SHEN B X, QIAN  Y. Building Rhodamine-BODIPY  fluorescent
                 probe for biological Cu (Ⅱ) and PPi detection in aqueous solution   platform using Click reaction: Naked-eye visible and multi-channel
                                                                                                 2+
                                                                                          3+
                 and in vivo[J]. Biosensors and Bioelectronics, 2017, 90: 276-282.   chemodosimeter for detection of  Fe  and Hg [J]. Sensors and
            [57]  ZHANG X W, ZHANG F, YANG B S, et al. A simple strategy for   Actuators B: Chemical, 2018, 260: 666-675.
                 constructing PET fluorescent probe and its application in hypochlorite   [61]  LI B, GU X, WANG M  H,  et al. A novel “off-on-off” fluorescent
                                                                                 3+
                                                                                      −
                 detection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular   probe for sensing of Fe  and F  successively in aqueous solution and
                 Spectroscopy, 2021, 258(2): 119827-119836.        its application in cells[J]. Dyes  and Pigments, 2021, 194:
            [58]  PANDITH  A,  CHOI J H, UNG O S,  et al.  A simple and robust   109637-109645.
                 PET-based anthracene-appended ONO chelate for sequential recognition   [62]  WEN S H, WANG Q F, GUO Z Q,  et al. A  rapid “on-off-on”
                    3+
                       –
                 of Fe /CN ions in aqueous media and its multimodal applications[J].   peptide-based fluorescent probe for selective and consecutive
                 Inorganica Chimica Acta, 2018, 482: 669-680.      detection of mercury and sulfide ions  in aqueous systems and live
            [59]  DONG Z M, WANG W, QIN L Y, et al. Novel reversible fluorescent   cells[J]. Journal of Photochemistry and Photobiology A: Chemistry,
                                     2+
                 probe for relay recognition of Zn  and PPi in aqueous medium and   2021, 417: 113354-113363.
   114   115   116   117   118   119   120   121   122   123   124