Page 39 - 《精细化工》2021年第10期
P. 39

第 10 期               徐淑艳,等:  氮化硼纳米片制备及其改性复合材料导热性能研究进展                                   ·1969·


                 single photon emission from point  defects in hexagonal boron   solvents in the liquid phase exfoliation of hexagonal boron nitride: A
                 nitride[J]. ACS Nano, 2016, 10(8): 7331-7338.     molecular dynamics simulation study[J]. Journal Physical Chemistry
            [9]   GONG  Y  N, XU  Z Q, LI D L,  et al. Two-dimensional  hexagonal   C, 2017, 121(1): 811-822.
                 boron nitride for building next-generation energy-efficient devices[J].   [27]  NIE X, LI G, JIANG Z, et al. Co-solvent exfoliation of hexagonal
                 ACS Energy Letters, 2021, 6(3): 985-996.          boron nitride: Effect of raw bulk boron nitride size and  co-solvent
            [10]  LIU Z, DIBAJI A, LI D, et al. Challenges and solutions in surface   composition[J]. Nanomaterials, 2020, 10(6): 1035.
                 engineering and assembly of boron nitride nanosheets[J]. Materials   [28]  WANG S F, TAO B H, YU S Y, et al. Insight into the liquid-phase
                 Today, 2021, 44: 194-210.                         exfoliation to prepare  BN nanosheets[J]. Materials Letters, 2020,
            [11]  GUERRA V, WAN C Y, MCNALLY T. Thermal conductivity of 2D   269: 127644.
                 nano-structured boron nitride (BN) and its composites with   [29]  WANG H  Y, SU X, SONG T,  et al. Scalable exfoliation and
                 polymers[J]. Progress in Materials Science, 2019, 100: 170-186.   dispersion  of  few-layer hexagonal boron  nitride nanosheets in
            [12]  LIN Y, CONNELL J W. Advances in 2D boron nitride nanostructures:   NMP-salt solutions[J]. Applied Surface Science, 2019, 488: 656-661.
                 Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene[J].   [30]  TIAN Z B, CHEN K X, SUN S Y, et al. Crystalline boron nitride
                 Nanoscale, 2012, 4(22): 6908-6939.                nanosheets by sonication-assisted  hydrothermal exfoliation[J].
            [13]  WANG Z, MEZIANI M J, PATEL  A K,  et al. Boron  nitride   Journal of Advanced Ceramics, 2019, 8(1): 72-78.
                 nanosheets from different preparations and correlations with their   [31]  ZHENG  Z Y,  COX M, LI B. Surface  modification of hexagonal
                 material properties[J]. Industrial & Engineering Chemistry Research,   boron  nitride nanomaterials: A review[J]. Journal of Materials
                 2019, 58(40): 18644-18653.                        Science, 2018, 53(1): 66-99.
            [14]  NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field   [32]  WENG Q H, WANG X B, WANG X, et al. Functionalized hexagonal
                 effect in atomically thin carbon films[J]. Science, 2004, 306(5696):   boron nitride nanomaterials: Emerging properties and applications[J].
                 666-669.                                          Chemical Society Reviews, 2016, 45(14): 3989-4012.
            [15]  PAKDEL A, ZHI  C Y, BANDO Y,  et al. Low-dimensional boron   [33]  DENIS P A, IRIBARNE F. New approach to accomplish the covalent
                 nitride nanomaterials[J]. Materials Today, 2012, 15(6): 256-265.   functionalization of boron nitride nanosheets: Cycloaddition
            [16]  JI D, WANG Z, ZHU Y J, et al. One-step environmentally friendly   reactions[J]. Journal of Physical Chemistry C, 2018, 122(32): 18583-
                 exfoliation  and functionalization of hexagonal  boron nitride  by   18587.
                 beta-cyclodextrin-assisted ball milling[J]. Ceramics International,   [34]  ZHAO K C, LIU G, CAO W X, et al. A combination of nanodiamond
                 2020, 46(13): 21084-21089.                        and boron nitride for the preparation of polyvinyl alcohol composite
            [17]  LEE D, LEE B, PARK K H, et al. Scalable exfoliation process for   film with high thermal conductivity[J]. Polymer, 2020, 206: 122885.
                 highly soluble boron nitride nanoplatelets by hydroxide-assisted ball   [35]  LIU Z, LI J H, LIU X H. Novel functionalized BN nanosheets/epoxy
                 milling[J]. Nano Letters, 2015, 15(2): 1238-1244.   composites with advanced thermal conductivity and mechanical
            [18]  WU G Y, YI M D, XIAO G C, et al. A novel method for producing   properties[J]. ACS Applied Materials & Interfaces, 2020, 12(5):
                 boron nitride nanosheets via synergistic exfoliation with pure shear   6503-6515.
                 ball milling and  ultrasonication[J]. Ceramics International, 2019,   [36]  RYU S, KIM K, KIM J. Silane surface modification of boron nitride
                 45(17): 23841-23848.                              for  high thermal conductivity with  polyphenylene sulfide  via melt
            [19]  KUMAR R, SAHOO S, JOANNI E, et al. A review on synthesis of   mixing method[J]. Polymers for Advanced  Technologies, 2017,
                 graphene,  h-BN and MoS 2 for energy storage applications: Recent   28(11): 1489-1494.
                 progress and perspectives[J]. Nano Research, 2019, 12(11):  2655-   [37]  CHEN S H, XU R Z, LIU J M, et al. Simultaneous production and
                 2694.                                             functionalization of boron  nitride nanosheets by sugar-assisted
            [20]  CAI Z Y, LIU  B  L, ZOU X  L,  et al. Chemical vapor deposition   mechanochemical exfoliation[J]. Advanced Materials, 2019, 31(10):
                 growth and applications  of  two-dimensional materials and their   1804810.
                 heterostructures[J]. Chemical Reviews, 2018, 118(13): 6091-6133.   [38]  LIU X, GAO Y W, SHANG Y S, et al. Non-covalent modification of
            [21]  ZHAO S C, ZHOU F, LI Z T, et al. Effect of precursor purity and   boron  nitride nanoparticle-reinforced PEEK composite: Thermally
                 flow rate on the CVD growth of hexagonal boron nitride[J]. Journal   conductive, interfacial, and mechanical properties[J]. Polymer, 2020,
                 of Alloys and Compounds, 2016, 688: 1006-1012.    203: 122763.
            [22]  ISMACH A, CHOU H, FERRER D A, et al. Toward the controlled   [39]  MORISHITA T, OKAMOTO H. Facile exfoliation and noncovalent
                 synthesis of hexagonal boron nitride films[J]. ACS Nano, 2012, 6(7):   superacid functionalization of boron nitride nanosheets and their use
                 6378-6385.                                        for highly thermally conductive and electrically insulating polymer
            [23]  CHOU H, MAJUMDER S, ROY A, et al. Dependence of h-BN film   nanocomposites[J]. ACS Applied Materials & Interfaces, 2016,
                 thickness as grown on  nickel single-crystal substrates of different   8(40): 27064-27073.
                 orientations[J]. ACS Applied Materials & Interfaces, 2018, 10(51):   [40]  LEE H, LEE J, JOO S H, et al. Dual functionalization of hexagonal
                 44862-44870.                                      boron nitride nanosheets using pyrene-tethered poly(4-vinylpyridine)
            [24]  KULKARNI H B, TAMBE P B, JOSHI G M. Influence of surfactant   for stable dispersion and facile device incorporation[J]. ACS Applied
                 assisted exfoliation of  hexagonal boron nitride nanosheets on   Nano Materials, 2020, 3(8): 7633-7642.
                 mechanical,  thermal  and  dielectric  properties  of  epoxy  [41]  ALVA  G,  LIN  Y X, FANG G Y.  Thermal and electrical
                 nanocomposites[J]. Composite Interfaces, 2020, 27(6): 529-550.   characterization of polymer/ceramic composites with polyvinyl
            [25]  KHAN A F, DOWN M P, SMITH G C, et al. Surfactant-exfoliated   butyral matrix[J]. Materials Chemistry Physics, 2018, 205: 401-415.
                 2D hexagonal boron nitride (2D-hBN): Role of surfactant upon the   [42]  TJONG S C. Structural and mechanical properties  of polymer
                 electrochemical reduction of oxygen and capacitance applications[J].   nanocomposites[J]. Materials Science & Engineering: Reports, 2006,
                 Journal of Materials Chemistry A, 2017, 5(8): 4103-4113.   53(3/4): 73-197.
            [26]  MUKHOPADHYAY  T K, DATTA  A. Deciphering the role of   [43]  GONZALEZ-ORTIZ  D,  SALAMEH C, BECHELANY M,  et al.
   34   35   36   37   38   39   40   41   42   43   44