Page 40 - 《精细化工》2021年第10期
P. 40

·1970·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 Nanostructured boron nitride-based  materials:  Synthesis  and   in Electronics, 2019, 30(2): 1531-1540.
                 applications[J]. Materials Today Advances, 2020, 8: 100107.   [59]  SHARMA V, KAGDADA H  L, JHA  P K, et al. Thermal transport
            [44]  ZHANG X M, ZHANG J J, XIA L C, et al. Simple and consecutive   properties of boron nitride based materials: A review[J]. Renewable
                 melt extrusion method to fabricate thermally conductive composites   & Sustainable Energy Reviews, 2020, 120: 109622.
                 with highly oriented boron nitrides[J]. ACS  Applied Materials &   [60]  CAI Q R, SCULLION D, GAN W, et al. High thermal conductivity
                 Interfaces, 2017, 9(27): 22977-22984.             of high-quality monolayer boron nitride and its thermal expansion[J].
            [45]  OH H,  KIM J. Fabrication of polymethyl  methacrylate composites   Science Advances, 2019, 5(6): eaav0129.
                 with silanized boron nitride by  in-situ polymerization for high   [61]  SONG H F, LIU J M, LIU B L, et al. Two-dimensional materials for
                 thermal conductivity[J]. Composites Science and Technology, 2019,   thermal management applications[J]. Joule, 2018, 2(3): 442-463.
                 172: 153-162.                                 [62]  MORADI S, CALVENTUS Y,  ROMAN F,  et al. Achieving high
            [46]  ZHANG  D L,  ZHA  J W, LI W  K,  et al. Enhanced  thermal   thermal conductivity in epoxy composites: Effect of boron nitride
                 conductivity and  mechanical property through boron  nitride hot   particle size and matrix-filler interface[J]. Polymers, 2019, 11(7): 1156.
                 string  in polyvinylidene fluoride fibers by electrospinning[J].   [63]  YAN Q W, DAI W, GAO J  Y,  et al. Ultrahigh-aspect-ratio boron
                 Composites Science and Technology, 2018, 156:1-7.   nitride nanosheets leading to superhigh in-plane thermal conductivity
            [47]  YANG X T, GUO Y Q, HAN Y X, et al. Significant improvement of   of foldable heat spreader[J]. ACS Nano, 2021, 15(4): 6489-6498.
                 thermal  conductivities for BNNS/PVA composite films  via   [64]  SUN Y Y, ZHOU  L  Y, HAN Y,  et al.  A new anisotropic thermal
                 electrospinning followed by hot-pressing technology[J]. Composites   conductivity equation for  h-BN/polymer  composites using finite
                 Part B: Engineering, 2019, 175: 107070.           element analysis[J]. International Journal of Heat and Mass Transfer,
            [48]  CHEN L, XIAO C, TANG Y L, et al. Preparation and properties of   2020, 160: 120157.
                 boron  nitride nanosheets/cellulose nanofiber shear-oriented films   [65]  GIRI A, HOPKINS P E. A review of experimental and computational
                 with high thermal conductivity[J]. Ceramics International, 2019,   advances in thermal boundary conductance  and nanoscale thermal
                 45(10): 12965-12974.                              transport across solid interfaces[J]. Advanced Functional Materials,
            [49]  BURGER N, LAACHACHI A, FERRIOL  M,  et al. Review  of   2020, 30(8): 1903857.
                 thermal conductivity in composites:  Mechanisms, parameters and   [66]  SONG J N, ZHANG Y.  Effect of an interface layer on thermal
                 theory[J]. Progress in Polymer Science, 2016, 61: 1-28.   conductivity of  polymer  composites studied by the design of
            [50]  MEHRA N, MU L W, JI T,  et al. Thermal transport in  polymeric   double-layered and triple-layered composites[J]. International
                 materials and across composite interfaces[J]. Applied Material Today,   Journal of Heat and Mass Transfer, 2019, 141: 1049-1055.
                 2018, 12: 92-130.                             [67]  MA X Y, WU S Y, YI Z  M,  et al. The effect  mechanism of
            [51]  WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement   functionalization  on thermal conductivity of boron nitride
                 on phase change materials for thermal energy storage: A review[J].   nanosheets/paraffin composites[J]. International Journal of Heat and
                 Energy Storage Materials, 2020, 25: 251-295.      Mass Transfer, 2019, 137: 790-798.
            [52]  WU X, HAN Q.  Thermal conductivity of monolayer hexagonal   [68]  DU Y, SHEN S Z, CAI K F,  et al. Research progress on
                 boron nitride: From defective to amorphous[J]. Computational   polymer-inorganic thermoelectric nanocomposite  materials[J].
                 Materials Science, 2020, 184: 109938.             Progress in Polymer Science, 2012, 37(6): 820-841.
            [53]  KIM S J, HONG C M, JANG K  S. Theoretical  analysis and   [69]  MOSANENZADEH S G, NAGUIB H E. Effect of filler arrangement
                 development of  thermally  conductive polymer composites[J].   and networking of hexagonal boron nitride on the conductivity of
                 Polymer, 2019, 176: 110-117.                      new thermal management polymeric composites[J]. Composites Part
            [54]  GUO  Y Q, RUAN K P, SHI X T,  et al. Factors affecting thermal   B: Engineering, 2016, 85: 24-30.
                 conductivities of the polymers and polymer composites: A review[J].   [70]  DONG J, CAO L, LI Y, et al. Largely improved thermal conductivity
                 Composites Science Technology, 2020, 193: 108134.   of PI/BNNS nanocomposites obtained by constructing a 3D BNNS
            [55]  HASSAN E A M, YANG  L L, ELAGIB T H H, et al. Synergistic   network and filling it with AgNW  as the thermally  conductive
                 effect of hydrogen bonding and π-π stacking in interface of CF/PEEK   bridges[J]. Composites Science and Technology, 2020, 196: 1-11.
                 composites[J]. Composites Part B: Engineering, 2019, 171: 70-77.   [71]  WANG X W, WU  P Y. 3D vertically  aligned BNNS network with
            [56]  IKRAMULLAH, RIZAL  S, NAKAI  Y, et  al. Evaluation  of   long-range continuous channels for achieving a highly  thermally
                 interfacial fracture toughness and interfacial shear strength of Typha   conductive composite[J]. ACS Applied Materials & Interfaces, 2019,
                 spp.  fiber/polymer composite by double shear test  method[J].   11(32): 28943-28952.
                 Materials, 2019, 12(14): 2225.                [72]  YUAN J, QIAN X T, MENG Z C, et al. Highly thermally conducting
            [57]  PYUN K R, KIHM K D, CHEON S, et al. Interfacial thermal contact   polymer-based films with magnetic field-assisted  vertically aligned
                 conductance inside the graphene-Bi 2Te 3 heterostructure[J]. Advanced   hexagonal boron nitride for flexible electronic encapsulation[J]. ACS
                 Materials Interfaces, 2019, 6(11): 1900275.       Applied Materials & Interfaces, 2019, 11(19): 17915-17924.
            [58]  LI J L, YIN J H, FENG Y, et al. Role of interface between BNNS and   [73]  LIANG  Z  Q, PEI Y, CHEN  C J,  et al. General, vertical, three-
                 LDPE in excellent electrical, thermal  and mechanical properties of   dimensional printing of two-dimensional materials with multiscale
                 LDPE/BNNS composites[J]. Journal of Materials Science: Materials   alignment[J]. ACS Nano, 2019, 13(11): 12653-12661.
   35   36   37   38   39   40   41   42   43   44   45