Page 201 - 《精细化工》2020年第2期
P. 201
第 2 期 莫官海,等: 硝酸改性污泥基生物炭除 U(Ⅵ)效果及机理分析 ·403·
3 结论 [12] OFOMAJA A E, NAIDOO E B, MODISE S J. Removal of
copper(Ⅱ) from aqueous solution by pine and base modified pine
cone powder as biosorbent[J]. Journal of Hazardous Materials, 2009,
(1)以脱水污泥为原料制备出 SSB,并通过硝 168: 909-917.
[13] GAO K F (高凯芳), JIAN M F (简敏菲), YU H P (余厚平), et al.
酸改性得到 SSB-AO,SSB-AO 的比表面积、孔体积 Effects of pyrolysis temperatures on the biochars and its surface
和孔径减小;酸化处理有效增加了羧基等含氧官能 functional groups made from rice straw and rice husk[J].
Environmental Chemistry (环境化学), 2016, 35(8): 1663-1669.
团数量。 [14] PANG H W (庞宏伟), TANG H (唐昊), WANG J Q (王佳琦), et al.
Ternary layered double hydroxide supported sulfide NZVI: Efficient
(2)SSB-AO 对 U(Ⅵ)的吸附过程符合拟二级动 U(Ⅵ) elimination and mechanism[J]. Journal of Inorganic Materials
力学模型;其吸附等温线较好地符合 Langmuir 模 (无机材料学报), 2020, 35(3): 381-389.
[15] GAO X (高翔), XIE S B (谢水波), LIU Y J (刘迎久), et al.
型;在 U(Ⅵ)的初始质量浓度为 10~100 mg/L、溶液 Experimental investigation on adsorption of U(Ⅵ) by chitosan-biochar
composite[J]. Atomic Energy Science and Technology (原子能科学
初始 pH 为 6、温度 30 ℃、NaNO 3 浓度为 0.01 mol/L、 技术), 2019, 53(8): 1350-1358.
吸附时间 300 min 及 SSB-AO 投加量为 0.6 g/L 的条 [16] PANG H W, DIAO Z F, WANG X X, et al. Adsorptive and reductive
removal of U( Ⅵ ) by Dictyophora indusiate-derived biochar
2+ 2–
件下,最大理论吸附量为 80.34 mg/g;Ca 及 CO 3 supported sulfide NZVI from wastewater[J]. Chemical Engineering
Journal, 2019, 366: 368-377.
能与 U(Ⅵ)形成阴离子配合物,降低了 SSB-AO 对 [17] WANG S F, YU S J, WU Y H, et al. Highly efficient removal of
+
U(Ⅵ)的吸附,但是 Na 几乎不影响 SSB-AO 对 U(Ⅵ) radioactive uranium on polyaniline modified carbon nanofiber
composites[J]. Scientia Sinica Chimica, 2019, 49(1): 71-79.
的去除。 [18] LI M X, LIU H B, CHEN T H, et al. Synthesis of magnetic biochar
composites for enhanced uranium(Ⅵ) adsorption[J]. Science of the
(3)SSB-AO 对 U(Ⅵ)的吸附去除机理为羟基与 Total Environment, 2019, 651: 1020-1028.
羧基的内层表面络合作用、静电作用以及离子交换 [19] STEWART B D, MAYES M A, FENDORF S. Impact of uranyl-
calcium-carbonato complexes on uranium(Ⅵ) adsorption to synthetic
作用;经过 5 次吸附/解吸实验,其对 U(Ⅵ)的去除 and natural sediments[J]. Environmental Science & Technology,
2010, 44(3): 928-934.
率保持在 88%以上,表明 SSB-AO 具有应用于含 [20] YAKOUT S M. Effect of porosity and surface chemistry on the
U(Ⅵ)废水处理的潜力。 adsorption-desorption of uranium(Ⅵ) from aqueous solutionand
groundwater[J]. Journal of Radioanalytical & Nuclear Chemistry,
2016, 308(2): 555-565.
参考文献: [21] AHN H, JO H Y, LEE Y J, et al. Adsorption characteristics of U(Ⅵ)
[1] LIANG Y (梁宇), GU P C (顾鹏程), YAO W (姚文), et al. on Fe( Ⅲ )-Cr( Ⅲ ) (oxy) hydroxides synthesized at different
Adsorption of radionuclide uranium onto carbon-based nanomaterials temperatures[J]. Journal of Environmental Radioactivity, 2016,
from aqueous systems[J]. Progress in Chemistry (化学进展), 2017, 158/159: 30-37.
29(9): 164-173. [22] GONDHALEKAR S C, SHUKLA S R. Equilibrium and kinetics
[2] LIU C (刘宸), LI X Y (李小燕), LIU Q Q (刘晴晴), et al. Removal study of uranium(Ⅵ) from aqueous solution by Citrus limetta
of U (Ⅵ) from aqueous solution using nanoscale zero-valent iron peels[J]. Journal of Radioanalytical & Nuclear Chemistry, 2014,
loaded on modified zeolite[J]. Hydrometallurgy of China (湿法冶 302(1): 451-457.
金), 2018, 37(4): 69-74. [23] LI B L (李博林), ZHU L (朱璐), WANG L S (王路生), et al.
[3] DONG L J, YANG J X, MOU Y Y, et al. Effect of various Sorption of U ( Ⅵ ) on amidoxime-functionalized mesoporous
environmental factors on the adsorption of U(Ⅵ) onto biochar silica[J]. Journal of Nuclear and Radiochemistry (核化学与放射化
derived from rice straw[J]. Journal of Radioanalytical and Nuclear 学), 2018, 40(3): 166-174.
Chemistry, 2017, 314(1): 377-386. [24] DING W C (丁文川), DU Y (杜勇), ZENG X L (曾晓岚), et al.
[4] MISHRA V K, SURESHKUMAR M K, GUPTA N, et al. Study on Aqueous solution Pb( Ⅱ ) removal by biochar derived from
sorption characteristics of uranium onto biochar derived from phosphorus-rich excess sludge[J]. Environmental Chemistry (环境化
eucalyptus wood[J]. Water Air and Soil Pollution, 2017, 228(8): 309. 学), 2012, 31(9): 1375-1380.
[5] HU H, ZHANG X, WANG T, et al. Bamboo (Acidosasa longiligula) [25] JIN J W, LI Y A, ZHANG J Y, et al. Influence of pyrolysis
shoot shell biochar: Its potential application to isolation of temperature on properties and environmental safety of heavy metals
uranium(Ⅵ) from aqueous solution[J]. Journal of Radioanalytical & in biochars derived from municipal sewage sludge[J]. Journal of
Nuclear Chemistry, 2018, 11: 1-14. Hazardous Materials, 2016, 320: 417-426.
[6] ALAM M S, GORMAN-LEWIS D, CHEN N, et al. Mechanisms of [26] IOANNOU K, HADJIYIANNIS P, LIATSOU I, et al. U( Ⅵ )
the removal of U(Ⅵ) from aqueous solution using biochar: A adsorption by biochar fiber-MnO 2 composites[J]. Journal of
combined spectroscopic and modeling approach[J]. Environmental Radioanalytical and Nuclear Chemistry, 2019, 320: 425-432.
Science & Technology, 2018, 52(55): 13057-13067. [27] HU Q Y, ZHU Y L, HU B W, et al. Mechanistic insights into
[7] LI N, YIN M L, YANG S T, et al. Mechanisms of U(Ⅵ) removal by sequestration of U(Ⅵ) toward magnetic biochar: Batch, XPS and
biochar derived from Ficus microcarpa aerial root: A comparison EXAFS techniques[J]. Journal of Environmental Sciences, 2018,
between raw and modified biochar[J]. Science of the Total 70(8): 217-225.
Environment, 2019, 697: 134115. [28] WANG X X (王祥学), YU S J (于淑君), WANG X K (王祥科).
[8] LIATSOU I, MICHAIL G, DEMETRIOU M, et al. Uranium binding Removal of radionuclides by metal-organic framework-based
by biochar fibres derived from luffa cylindrica after controlled materials[J]. Journal of Inorganic Materials (无机材料学报), 2019,
surface oxidation[J]. Journal of Radioanalytical & Nuclear 34(1): 17-26.
Chemistry, 2016, 311(1): 871-875. [29] CHEN H B (陈华柏), XIE S B (谢水波), LIU J X (刘金香), et al.
[9] JIN J, LI S W, PENG X Q, et al. HNO 3 modified biochars for Characteristics and mechanism of uranium( Ⅵ ) absorbed by
uranium( Ⅵ ) removal from aqueous solution[J]. Bioresource anaerobic granular sludge[J]. The Chinese Journal of Nonferrous
Technology, 2018, 256: 247-256. Metal (中国有色金属学报), 2014, 24(9): 2418-2425.
[10] SONG S (宋爽), GU P C (顾鹏程), CHEN Z S (陈中山), et al. [30] DAI L (戴亮), REN J (任珺), TAO L (陶玲), et al. Properties of
Removal of U(Ⅵ) by acid-oxidized biochar: Batch experiments and sewage sludge biochar produced under different pyrolysis temperatures
2+
spectroscopy study[J]. Scientia Sinica (Chimica) (中国科学: 化学), and its sorption capability to Cd [J]. Chinese Journal of Environmental
2019, 49(1): 155-164. Engineering (环境工程学报), 2017, 11(7): 4029-4035.
[11] MO G H (莫官海), XIE S B (谢水波), ZENG T T (曾涛涛), et al. [31] MA F F (马锋锋), ZHAO B W (赵保卫), DIAO J R (刁静茹), et al.
The efficiency and mechanism of U( Ⅵ ) removal from acidic Adsorption characteristics of p-nitrophenol removal by magnetic
wastewater by sewage sludge-derived biochar[J]. CIESC Journal (化 biochar[J]. China Environmental Science (中国环境科学), 2019,
工学报), 2020, 71(5): 2354-2364. 39(1): 170-178.