Page 201 - 《精细化工》2020年第2期
P. 201

第 2 期                   莫官海,等:  硝酸改性污泥基生物炭除 U(Ⅵ)效果及机理分析                                  ·403·


            3   结论                                             [12]  OFOMAJA A E,  NAIDOO E B, MODISE  S  J.  Removal  of
                                                                   copper(Ⅱ) from aqueous  solution by  pine and base modified  pine
                                                                   cone powder as biosorbent[J]. Journal of Hazardous Materials, 2009,
                (1)以脱水污泥为原料制备出 SSB,并通过硝                            168: 909-917.
                                                               [13]  GAO K F (高凯芳), JIAN M F (简敏菲), YU H P (余厚平), et al.
            酸改性得到 SSB-AO,SSB-AO 的比表面积、孔体积                          Effects of pyrolysis temperatures on the biochars and its surface
            和孔径减小;酸化处理有效增加了羧基等含氧官能                                 functional  groups made from rice straw and rice husk[J].
                                                                   Environmental Chemistry (环境化学), 2016, 35(8): 1663-1669.
            团数量。                                               [14]  PANG H W (庞宏伟), TANG H (唐昊), WANG J Q (王佳琦), et al.
                                                                   Ternary layered double hydroxide supported sulfide NZVI: Efficient
                (2)SSB-AO 对 U(Ⅵ)的吸附过程符合拟二级动                        U(Ⅵ) elimination and mechanism[J]. Journal of Inorganic Materials
            力学模型;其吸附等温线较好地符合 Langmuir 模                            (无机材料学报), 2020, 35(3): 381-389.
                                                               [15]  GAO X (高翔),  XIE S B (谢水波), LIU Y  J  (刘迎久),  et al.
            型;在 U(Ⅵ)的初始质量浓度为 10~100 mg/L、溶液                        Experimental investigation on adsorption of U(Ⅵ) by chitosan-biochar
                                                                   composite[J]. Atomic Energy Science and Technology (原子能科学
            初始 pH 为 6、温度 30  ℃、NaNO 3 浓度为 0.01 mol/L、              技术), 2019, 53(8): 1350-1358.
            吸附时间 300 min 及 SSB-AO 投加量为 0.6 g/L 的条              [16]  PANG H W, DIAO Z F, WANG X X, et al. Adsorptive and reductive
                                                                   removal of U( Ⅵ ) by  Dictyophora indusiate-derived biochar
                                                  2+     2–
            件下,最大理论吸附量为 80.34 mg/g;Ca 及 CO 3                       supported sulfide NZVI from wastewater[J]. Chemical Engineering
                                                                   Journal, 2019, 366: 368-377.
            能与 U(Ⅵ)形成阴离子配合物,降低了 SSB-AO 对                       [17]  WANG S F, YU S J, WU Y H,  et al. Highly efficient removal of
                                +
            U(Ⅵ)的吸附,但是 Na 几乎不影响 SSB-AO 对 U(Ⅵ)                      radioactive uranium on polyaniline modified carbon nanofiber
                                                                   composites[J]. Scientia Sinica Chimica, 2019, 49(1): 71-79.
            的去除。                                               [18]  LI M X, LIU H B, CHEN T H, et al. Synthesis of magnetic biochar
                                                                   composites for enhanced uranium(Ⅵ)  adsorption[J]. Science of the
                (3)SSB-AO 对 U(Ⅵ)的吸附去除机理为羟基与                        Total Environment, 2019, 651: 1020-1028.
            羧基的内层表面络合作用、静电作用以及离子交换                             [19]  STEWART  B D,  MAYES M  A, FENDORF S. Impact of uranyl-
                                                                   calcium-carbonato complexes on uranium(Ⅵ) adsorption to synthetic
            作用;经过 5 次吸附/解吸实验,其对 U(Ⅵ)的去除                            and natural sediments[J]. Environmental Science &  Technology,
                                                                   2010, 44(3): 928-934.
            率保持在 88%以上,表明 SSB-AO 具有应用于含                        [20]  YAKOUT S  M. Effect of porosity and surface  chemistry on the
            U(Ⅵ)废水处理的潜力。                                           adsorption-desorption of uranium(Ⅵ) from aqueous solutionand
                                                                   groundwater[J]. Journal  of Radioanalytical & Nuclear  Chemistry,
                                                                   2016, 308(2): 555-565.
            参考文献:                                              [21]  AHN H, JO H Y, LEE Y J, et al. Adsorption characteristics of U(Ⅵ)
            [1]  LIANG Y  (梁宇), GU P C (顾鹏程), YAO W (姚文),  et al.   on Fe( Ⅲ )-Cr( Ⅲ ) (oxy) hydroxides synthesized  at different
                 Adsorption of radionuclide uranium onto carbon-based nanomaterials   temperatures[J]. Journal of Environmental Radioactivity, 2016,
                 from aqueous systems[J]. Progress in Chemistry (化学进展), 2017,   158/159: 30-37.
                 29(9): 164-173.                               [22]  GONDHALEKAR  S C, SHUKLA S  R. Equilibrium and kinetics
            [2]   LIU C (刘宸), LI X Y (李小燕), LIU Q Q (刘晴晴), et al. Removal   study of uranium(Ⅵ) from aqueous solution by  Citrus limetta
                 of U (Ⅵ)  from aqueous  solution using nanoscale zero-valent iron   peels[J]. Journal of Radioanalytical  & Nuclear Chemistry, 2014,
                 loaded on modified zeolite[J]. Hydrometallurgy of China (湿法冶  302(1): 451-457.
                 金), 2018, 37(4): 69-74.                       [23]  LI B L (李博林), ZHU  L (朱璐),  WANG  L S (王路生),  et al.
            [3]   DONG L J,  YANG J X, MOU  Y  Y,  et al. Effect of various   Sorption of U ( Ⅵ ) on amidoxime-functionalized mesoporous
                 environmental factors on the adsorption of U(Ⅵ) onto biochar   silica[J]. Journal  of Nuclear and Radiochemistry (核化学与放射化
                 derived from rice straw[J]. Journal of  Radioanalytical and Nuclear   学), 2018, 40(3): 166-174.
                 Chemistry, 2017, 314(1): 377-386.             [24]  DING  W C (丁文川), DU  Y (杜勇),  ZENG X L  (曾晓岚),  et al.
            [4]   MISHRA V K, SURESHKUMAR M K, GUPTA N, et al. Study on   Aqueous solution Pb( Ⅱ ) removal by biochar derived from
                 sorption characteristics of uranium onto biochar  derived from   phosphorus-rich excess sludge[J]. Environmental Chemistry (环境化
                 eucalyptus wood[J]. Water Air and Soil Pollution, 2017, 228(8): 309.     学), 2012, 31(9): 1375-1380.
            [5]   HU H, ZHANG X, WANG T, et al. Bamboo (Acidosasa longiligula)   [25]  JIN J W, LI Y  A, ZHANG J  Y,  et al. Influence of pyrolysis
                 shoot shell biochar:  Its potential application  to  isolation of   temperature on properties and environmental safety of heavy metals
                 uranium(Ⅵ) from  aqueous solution[J].  Journal of Radioanalytical  &   in biochars derived from  municipal sewage sludge[J]. Journal of
                 Nuclear Chemistry, 2018, 11: 1-14.                Hazardous Materials, 2016, 320: 417-426.
            [6]   ALAM M S, GORMAN-LEWIS D, CHEN N, et al. Mechanisms of   [26]  IOANNOU K, HADJIYIANNIS P, LIATSOU I,  et al. U( Ⅵ )
                 the removal of U(Ⅵ) from  aqueous solution using biochar: A   adsorption  by biochar fiber-MnO 2 composites[J]. Journal of
                 combined spectroscopic and modeling approach[J]. Environmental   Radioanalytical and Nuclear Chemistry, 2019, 320: 425-432.
                 Science & Technology, 2018, 52(55): 13057-13067.     [27]  HU Q Y, ZHU  Y L, HU B W,  et al. Mechanistic insights into
            [7]   LI N, YIN M L, YANG S T, et al. Mechanisms of U(Ⅵ) removal by   sequestration of U(Ⅵ) toward magnetic biochar: Batch,  XPS and
                 biochar derived from  Ficus microcarpa aerial root: A comparison   EXAFS techniques[J]. Journal  of Environmental Sciences, 2018,
                 between raw and modified biochar[J]. Science of  the Total   70(8): 217-225.
                 Environment, 2019, 697: 134115.               [28]  WANG X X  (王祥学), YU S J (于淑君),  WANG X K (王祥科).
            [8]   LIATSOU I, MICHAIL G, DEMETRIOU M, et al. Uranium binding   Removal of radionuclides  by metal-organic framework-based
                 by biochar fibres  derived from luffa cylindrica after controlled   materials[J]. Journal of Inorganic Materials (无机材料学报), 2019,
                 surface oxidation[J]. Journal of  Radioanalytical & Nuclear   34(1): 17-26.
                 Chemistry, 2016, 311(1): 871-875.             [29]  CHEN H B (陈华柏), XIE S B (谢水波), LIU J X (刘金香), et al.
            [9]   JIN J, LI S  W, PENG  X  Q,  et al. HNO 3  modified biochars for   Characteristics and mechanism of uranium( Ⅵ ) absorbed  by
                 uranium( Ⅵ ) removal from aqueous solution[J]. Bioresource   anaerobic granular sludge[J].  The Chinese Journal of  Nonferrous
                 Technology, 2018, 256: 247-256.                   Metal (中国有色金属学报), 2014, 24(9): 2418-2425.
            [10]  SONG S (宋爽), GU  P C  (顾鹏程), CHEN  Z S (陈中山),  et al.   [30]  DAI L (戴亮), REN J (任珺), TAO L  (陶玲),  et al. Properties of
                 Removal of U(Ⅵ) by acid-oxidized biochar: Batch experiments and   sewage sludge biochar produced under different pyrolysis temperatures
                                                                                     2+
                 spectroscopy study[J]. Scientia Sinica (Chimica) (中国科学:  化学),   and its sorption capability to Cd [J]. Chinese Journal of Environmental
                 2019, 49(1): 155-164.                             Engineering (环境工程学报), 2017, 11(7): 4029-4035.
            [11]  MO G H (莫官海), XIE S B (谢水波), ZENG T T (曾涛涛), et al.   [31]  MA F F (马锋锋), ZHAO B W (赵保卫), DIAO J R (刁静茹), et al.
                 The efficiency and mechanism of U( Ⅵ ) removal from acidic   Adsorption characteristics of  p-nitrophenol removal by  magnetic
                 wastewater by sewage sludge-derived biochar[J]. CIESC Journal (化  biochar[J]. China  Environmental Science (中国环境科学), 2019,
                 工学报), 2020, 71(5): 2354-2364.                     39(1): 170-178.
   196   197   198   199   200   201   202   203   204   205   206