Page 216 - 《精细化工》2020年第2期
P. 216
·418· 精细化工 FINE CHEMICALS 第 38 卷
BPTCD-PEG 的热性能进行表征,结果表明, flexible conductive fabric with thermal regulation where temperature
can be customized[J]. Textile Research Journal, 2015, 85(6): 590-600.
BPTCD-PEG 在 41.7 ℃出现明显的熔融峰,相变潜 [6] WU Y, CHEN C Z, JIA Y F, et al. Review on electrospun ultrafine
phase change fibers (PCFs) for thermal energy storage[J]. Applied
热为 80.42 J/g,在 30.7 ℃出现明显结晶峰,对应潜 Energy, 2018, 210: 167-181.
[7] GUO J H (郭军红), SHAO J Y (邵竞尧), XU F (许芬), et al. RAM-
热为 63.71 J/g,说明 BPTCD-PEG 具有显著的蓄热 microencapsulated phase change infrared and microwave stealth
composites[J]. Fine Chemicals (精细化工), 2017, 34(12): 1350-1355.
调温性能。 [8] SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal
(2)对 BPTCD-PEG 整理后棉织物的表面形貌 regulation of phase change material incorporated in thermal protective
clothing[J]. Applied Thermal Engineering, 2020, 174: 115340.
进行了表征,BPTCD-PEG 在棉纤维表面形成了光 [9] ZHANG W, HAO S, ZHAO D D, et al. Preparation of PMMA/SiO 2
PCM microcapsules and its thermal regulation performance on denim
滑平整的薄膜且出现明显的彩色液晶织构。 fabric[J]. Pigment & Resin Technology, 2020, 49(6): 491-499.
[10] YANG J, ZHANG G Q, LIU G J, et al. Preparation of composite
(3)测试了质量分数为 80%的 BPTCD-PEG 整 phase change microcapsules and its application on cotton fabrics[J].
Journal of Textile Research, 2019, 40(10): 127-133.
理后棉织物的调温性能。整理后棉织物与未整理原 [11] KARASZEWSKA A, KAMINSKA I, NEJMAN A, et al. Thermal-
棉织物相比,在 30~40 ℃内,升温速率与降温速率 regulation of nonwoven fabrics by microcapsules of n-eicosane
coated with a polysiloxane elastomer[J]. Materials Chemistry and
都明显降低,表明 BPTCD-PEG 起到了升温过程中 Physics, 2019, 226: 204-213.
[12] XU R, WANG W, YU D. A novel multilayer sandwich fabric-based
降低棉织物的表面温度、降温过程中升高棉织物的 composite material for infrared stealth and super thermal insulation
protection[J]. Composites Structures, 2019, 212: 58-65.
表面温度的作用。结果表明,在此温度范围内,经 [13] CHEN X X (陈新祥), ZHANG G Q (张国庆), ZHOU L (周岚), et
al. Preparation and properties of thermos-regulated fabrics based on
BPTCD-PEG 整理后的棉织物具有蓄热调温性能。 phase change films[J]. Shanghai Textile Science & Technology (上海
纺织科技), 2020, 48(6): 30-33.
(4)经 BPTCD-PEG 整理后纤维素复合蓄热调 [14] HU J C (胡剑灿), ZHANG Y Q (张宇群), YAO P P (姚盼盼), et al.
温材料具有良好的耐水洗性能。 Discussion on phase change materials for smart thermos-regulated textile
applications[J]. China Fiber Inspection (中国纤检), 2017, 5: 141-144.
[15] MA H J(马菡婧), TIAN B H (田宝华), HE Y (何源). Research
参考文献: progress in preparation and textile application of MCPCM[J]. New
Chemical Materials (化工新型材料), 2020, 48(4): 20-23.
[1] CAI L L, PENG Y C, XU J W, et al. Temperature regulation in [16] XIN C Z, TIAN Y C, WANG Y W, et al. Effect of curing temperature
colored infrared-transparent polyethylene textiles[J]. Joule, 2019, on the performance of microencapsulated low melting point paraffin
3(6): 1478-1486. using urea-formaldehyde resin as a shell[J]. Textile Research Journal,
[2] PANWAR K, JASSAL M, AGRAWAL A K. TiO 2-SiO 2 Janus 2013, 84(8): 831-839.
particles treated cotton fabric for thermal regulation[J]. Surface & [17] MA F (马烽), LI Y C (李永超), CHEN M H (陈明辉), et al.
Coatings Technology, 2017, 309: 897-903. Preparation of melamine resin/butyl stearate microencapsulated
[3] KADEM F D, SARAC E G. An experimental application on denim phase change materials[J]. Journal of Materials Engineering (材料工
garment to give thermal regulation property[J]. Journal of the Textile 程), 2010, 31(7): 42-45.
Institute, 2017, 108(3): 353-360. [18] HOU A Q, FENG G C, ZHUO J Y, et al. UV light-induced
[4] ROH J S, KIM S. All-fabric intelligent temperature regulation system generation of reactive oxygen species and antimicrobial properties of
for smart clothing applications[J]. Journal of Intelligent Material cellulose fabric modified by 3,3′,4,4′-benzophenone tetracarboxylic
Systems and Structures, 2016, 27(9): 1165-1175. acid[J]. ACS Applied Materials & Interfaces, 2015, 7: 27918-27924.
[5] TONG J H, LIU S, YANG C X, et al. Modeling of package-free
(上接第 328 页) [18] MUKHERJEE S, BETAL S, CHATTIPADHYAY A P. A novel turn-on
red light emitting chromofluorogenic hydrazone based fluoride sensor:
[9] LIU P X, CHEN H, XU N, et al. A new “turn-on” fluorescent sensor Spectroscopy and DFT studies[J]. Journal of Photochemistry and
–
for highly selective sensing of H 2PO 4[J]. Inorganic Chemistry Photobiology A: Chemistry, 2020, 389: 112219.
Communications, 2017, 79: 60-64. [19] HU J H, YIN Z Y, GUI K, et al. A novel supramolecular polymer gel-
[10] WEI X K (魏小康), GU J C (谷静池), LIU X L (刘兴丽), et al. based long-alkyl-chain-functionalized coumarin acylhydrazone for
Synthesis and anion recognition of macrocycle containing the sequential detection and separation of toxic ions[J]. Soft Matter,
isophthalamide unit[J]. Chinnese Journal of Organic Chemistry (有 2020, 16: 1029-1033.
机化学), 2018, 38: 3386-3393. [20] LIN Q, ZHU X, FU Y P, et al. Rationally designed anion-responsive-
−
[11] SANCHEZ L A, NONAPPA, BHOWMIK S, et al. Rapid self-healing organogels: Sensing F via reversible color changes in gel-gel states
and anion selectivity in metallosupramolecular gels assisted by fluorine- with specific selectivity[J]. Soft Matter, 2014, 10: 5715-5723.
fluorine interactions[J]. Dalton Transactions, 2017, 46: 7309-7316. [21] CAO C (曹成), QIU M H (仇满红), YOU X M (尤兴梅), et al.
[12] DWIVEDI S K, RAZI S S, MISRA A. Sensitive colorimetric detection Syntheses of tripodal benzoyl thiourea ions receptors and their
−
−
of CN and AcO anions in a semi-aqueous environment through a recognition properties[J]. Chemistry (化学通报), 2020, 3: 246-252.
coumarin-naphthalene conjugate azo dye[J]. New Journal of Chemistry, [22] ACHALKUMAR A S, HIREMATH U S, RAO D S S, et al.
2019, 43: 5126-5132. Self-assembly of hekates-tris(N-salicylideneaniline)s into columnar
[13] SINGH A, SAHOO S K, TRIVEDI D R. Colorimetric anion sensors atructures: Aynthesis and characterization[J]. Journal of Organic
based on positional effect of nitro group for recognition of biologically Chemistry, 2013, 78(2): 527-544.
relevant anions in organic and aqueous medium, insight real-life [23] SOHN D H, PARK J, CHO S J, et al. Novel anion receptors for
application and DFT studies[J]. Spectrochimica Acta Part A: Molecular selective recognition of dimethyl phosphinate and carboxylate[J].
and Biomolecular Spectroscopy, 2018, 188: 596-610. Tetrahedron, 2017, 73(2): 212-221.
[14] TARAFDAR D, SAHA I, GHOSH K. Coumarin-based urea-amide [24] BENESI H A, HILDEBRAND J H. A spectrophotometric investigation
−
scaffold in ratiometric fluorescence sensing of CN [J]. Tetrahedron of the interaction of iodine with aromatic hydrocarbons[J]. Journal of
Letters, 2017, 58: 2038-2043. the American Chemical Society, 1949, 71(8): 2703-2707.
[15] ATHAR M, LONE M Y, JHA P C. Recognition of anions using urea [25] MILLER J N, MILLER J C. Statistics and chemometrics for
and thiourea substituted calixarenes: A DFT assessment of non-covalent analyticalchemistry[M]. 6th ed. England: Pearson Education, 2014:
interactions[J]. Chemical Physics, 2018, 501: 68-77. 124-127.
[16] GARCIA-LOPEZ M C, MUNOZ-FLORE B M, JIMENEZ-PEREZ [26] FRISCH M J, TRUCKS G W, SCHLEGELH B, et al. Gaussian 09,
V M, et al. Synthesis and photophysical characterization of organotin Revision a. 01[CP]. Wallingford, CT: Gaussian Inc, 2009.
compounds derived from Schiff bases for organic light emitting [27] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio
diodes[J]. Dyes and Pigments, 2014, 106: 188-196. calculation of vibrational absorption and circular dichroism spectra
[17] SHYAMAPROSAD G, SIBAPRASAD M, AVIJIT K D, et al. Single using density functional force fields[J]. Journal of Physical Chemistry,
chemosensor for highly selective colorimetric and fluorometric dual 1994, 98: 11623-11627.
sensing of Cu(Ⅱ) as well as ‘NIRF’ to acetate ion[J]. Tetrahedron [28] LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J].
Letters, 2013, 54: 6631-6634. Journal of Computational Chemistry, 2012, 33: 580-592.