Page 22 - 《精细化工》2020年第2期
P. 22

·224·                             精细化工   FINE CHEMICALS                                 第 38 卷

            胞培养、药物输送、组织修复与重建等。此外,其                                 skin for instantaneous pressure visualization[J]. Nature  Materials,
                                                                   2013, 12(10): 899-904.
            在生物医药、柔性传感器、驱动器、涂层、光学、
                                                               [12]  LI L L, PAN L J, MA Z,  et al. All inkjet-printed amperometric
            水收集器、电子器件、3D 打印等领域也得到了很好                               multiplexed biosensors based on nanostructured conductive hydrogel
            发展。除了以上所列举的功能,明胶基水凝胶还被                                 electrodes[J]. Nano Letters, 2018, 18(6): 3322-3327.
                                                               [13]  LI L L, WANG Y Q, PAN L J, et al. A nanostructured conductive
            赋予形状记忆、黏性等功能。                                          hydrogels-based biosensor platform  for human  metabolite  detection[J].
                 在过去的几十年里,水凝胶在软体机器人、生                              Nano Letters, 2015, 15(2): 1146-1151.
                                                               [14]  HOU C, XU Z J,  QIU W,  et al. A biodegradable and stretchable
            物医学、能源和环境修复等多个领域出现了快速地
                                                                   protein-based sensor as artificial electronic skin for human motion
            发展。特别是,水凝胶和活体组织在机械、化学和                                 detection[J]. Small, 2019, 15(11): 1805084.
            生物特性上的相似性使得水凝胶成为生物和工程系                             [15]  WANG Y, ZHANG L N, LU A. Transparent, antifreezing, ionic
                                                                   conductive cellulose hydrogel with  stable sensitivity at subzero
            统集成的理想替代品。随着明胶基水凝胶的应用领                                 temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(44):
            域越来越广泛,单一的功能性明胶基水凝胶已无法                                 41710-41716.
                                                               [16]  WANG Q G, MYNAR J L, YOSHIDA M, et al. High-water-content
            满足生物体的不同需求,因此研究高强度、响应速                                 mouldable hydrogels by mixing clay and a dendritic molecular
            度快、生物相容性好且具有多功能响应性的明胶基                                 binder[J]. Nature, 2010, 463(7279): 339-343.
                                                               [17]  CUSHING M C,  ANSETH K S. Materials science. Hydrogel cell
            水凝胶复合材料,以应用于不同领域已成为未来的
                                                                   cultures[J]. Science, 2007, 316(5828): 1133-1134.
            重点研究方向。综合近几年水凝胶的发展趋势,研                             [18]  PARK M H, JOO M K, CHOI B G, et al. Biodegradable thermogels[J].
            究者致力于为满足某一性能方面的特定需求而进行                                 Accounts of Chemical Research, 2012, 45(3): 424-433.
                                                               [19]  ZHAO W, JIN X, YANG C, et  al. Degradable natural polymer
            集中研究。以简单、经济、智能的方式改善水凝胶                                 hydrogels for articular cartilage tissue engineering[J]. Journal of
            的性能,并且不使用有机溶剂或无毒交联剂来合成                                 Chemical Technology and Biotechnology, 2013, 88(3): 327-339.
                                                               [20]  SAARAI A, SEDLACEK T, KASPARKOVA V, et  al. On the
            水凝胶将成为研究者一致追求的目标。如何将功能
                                                                   characterization of sodium  alginate/gelatine-based hydrogels for
            性水凝胶复合材料应用到日常生活中,实现工业化                                 wound dressing[J]. Journal of Applied Polymer Science, 2012,
            生产,不断挖掘水凝胶的应用潜力,还需要开展大                                 126(S1): E79-E88.
                                                               [21]  HOZUMI T, KAGEYAMA T,  OHTA S,  et al. Injectable hydrogel
            量的研究工作。                                                with slow degradability composed of gelatin and  hyaluronic acid
                                                                   cross-linked by Schiff’s base formation[J].  Biomacromolecules, 2017,
            参考文献:                                                  19(2): 288-297.
                                                               [22]  TAYLOR D  L, PANHUIS M I H. Self-healing hydrogels[J].
            [1]   ZHANG  Y S, KHADEMHOSSEINI A. Advances in engineering   Advanced Materials, 2016, 28(41): 9060-9093.
                 hydrogels[J]. Science, 2017, 356(6337): eaaf3627.
                                                               [23]  CHEN M F (陈密发), LIU Y  Q (刘永泉), WANG J (王静),  et al.
            [2]   QIN Z H, DONG D  Y,  YAO M M,  et al. Freezing-tolerant
                 supramolecular  organohydrogel  with high toughness, thermoplasticity,   Advances in self-healing materials with hydrogen bonding interaction[J].
                 and healable and adhesive properties[J].  ACS Applied Materials &   Journal of Ludong University (鲁东大学学报), 2018, 34(2): 150-156.
                 Interfaces, 2019, 11(23): 21184-21193.        [24]  WANG J,  TANG F,  WANG Y,  et al. Self-healing  and highly
            [3]   THÉRIEN-AUBIN H, WU Z  L,  NIE Z H,  et al. Multiple shape   stretchable gelatin hydrogel for self-powered strain sensor[J]. ACS
                                                                   Applied Materials & Interfaces, 2020, 12(1): 1558-1566.
                 transformations  of composite hydrogel sheets[J]. Journal of the
                 American Chemical Society, 2013, 135(12): 4834-4839.   [25]  ZHANG  G  Z, LYU  L, DENG Y H,  et al. Self-healing gelatin
            [4]   IWASO K, TAKASHIMA  Y, HARADA A. Fast response dry-type   hydrogels cross-linked by combining multiple hydrogen bonding and
                 artificial molecular muscles with [c2]daisy chains[J]. Nature Chemistry,   ionic  coordination[J]. Macromolecular  Rapid Communications,  2017,
                 2016, 8(6): 625-632.                              38(12): 1700018.
                                                               [26]  LEI J F, LI X Y, WANG S, et al. Facile fabrication of biocompatible
            [5]   KIM Y S, LIU M J, ISHIDA Y, et al. Thermoresponsive actuation
                 enabled by permittivity switching in an electrostatically anisotropic   gelatin-based self-healing hydrogel[J]. ACS Applied Polymer Materials,
                 hydrogel[J]. Nature Materials, 2015, 14(10): 1002-1007.   2019, 1(6): 1350-1358.
            [6]   WU J F, WANG H T, SU Z W, et al. Highly flexible and sensitive   [27]  WANG S, LEI J F, YI X L, et al. Fabrication of polypyrrole-grafted
                 wearable  e-skin  based on  graphite nanoplatelet and polyurethane   gelatin-based hydrogel with conductive, self-healing, and injectable
                 nanocomposite films in mass industry production available[J]. ACS   properties[J]. ACS Applied Polymer Materials, 2020, 2(7): 3016-3023.
                 Applied Materials & Interfaces, 2017, 9(44): 38745-38754.   [28]  REN K,  CHENG Y, HUANG C, et al. Self-healing conductive
            [7]   ZHANG Y L, FANG Y S, LI J, et al. Dual-mode electronic skin with   hydrogels based on alginate, gelatin and polypyrrole serve as a
                 integrated tactile sensing and visualized injury warning[J]. ACS   repairable circuit and a mechanical sensor[J]. Journal  of  Materials
                 Applied Materials & Interfaces, 2017, 9(42): 37493-37500.   Chemistry B, 2019, 7(37): 5704-5712.
            [8]   LEI Z Y, WANG  Q K, SUN S T,  et al. A bioinspired  mineral   [29]  JAHAN I, GEORGE  E, SAXENA  N,  et al. Silver nanoparticle
                 hydrogel as a self-healable,  mechanically adaptable ionic skin for   entrapped soft GelMA gels as prospective scaffolds for wound
                 highly sensitive pressure sensing[J]. Advanced Materials, 2017, 29(22):   healing[J]. ACS Applied Bio Materials, 2019, 2(5): 1802-1814.
                 1700321.                                      [30]  XU  W G, DONG  S J, HAN  Y P,  et al. Hydrogels as antibacterial
            [9]   ZHONG W B, LIU Q Z, WU Y Z, et al. A nanofiber based artificial   biomaterials[J]. Current Pharmaceutical Design, 2018, 24(8): 843-854.
                 electronic skin with high pressure sensitivity and 3D conformability[J].   [31]  LI S Q, DONG S J, XU  W G,  et al. Antibacterial hydrogels[J].
                 Nanoscale, 2016, 8(24): 12105-12112.              Advanced Science, 2018, 5(5): 1700527.
            [10]  CHORTOS A, LIU J, BAO Z  N.  Pursuing  prosthetic electronic   [32]  LE T P, LEE Y, THI T T H, et al. Catechol-rich gelatin hydrogels in
                 skin[J]. Nature Materials, 2016, 15(9): 937-950.   situ hybridizations with silver nanoparticle for enhanced antibacterial
            [11]  WANG C, HWANG D,  YU  Z B,  et al. User-Interactive electronic   activity[J]. Materials Science and Engineering: C, 2018, 92: 52-60.
   17   18   19   20   21   22   23   24   25   26   27