Page 22 - 《精细化工》2020年第2期
P. 22
·224· 精细化工 FINE CHEMICALS 第 38 卷
胞培养、药物输送、组织修复与重建等。此外,其 skin for instantaneous pressure visualization[J]. Nature Materials,
2013, 12(10): 899-904.
在生物医药、柔性传感器、驱动器、涂层、光学、
[12] LI L L, PAN L J, MA Z, et al. All inkjet-printed amperometric
水收集器、电子器件、3D 打印等领域也得到了很好 multiplexed biosensors based on nanostructured conductive hydrogel
发展。除了以上所列举的功能,明胶基水凝胶还被 electrodes[J]. Nano Letters, 2018, 18(6): 3322-3327.
[13] LI L L, WANG Y Q, PAN L J, et al. A nanostructured conductive
赋予形状记忆、黏性等功能。 hydrogels-based biosensor platform for human metabolite detection[J].
在过去的几十年里,水凝胶在软体机器人、生 Nano Letters, 2015, 15(2): 1146-1151.
[14] HOU C, XU Z J, QIU W, et al. A biodegradable and stretchable
物医学、能源和环境修复等多个领域出现了快速地
protein-based sensor as artificial electronic skin for human motion
发展。特别是,水凝胶和活体组织在机械、化学和 detection[J]. Small, 2019, 15(11): 1805084.
生物特性上的相似性使得水凝胶成为生物和工程系 [15] WANG Y, ZHANG L N, LU A. Transparent, antifreezing, ionic
conductive cellulose hydrogel with stable sensitivity at subzero
统集成的理想替代品。随着明胶基水凝胶的应用领 temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(44):
域越来越广泛,单一的功能性明胶基水凝胶已无法 41710-41716.
[16] WANG Q G, MYNAR J L, YOSHIDA M, et al. High-water-content
满足生物体的不同需求,因此研究高强度、响应速 mouldable hydrogels by mixing clay and a dendritic molecular
度快、生物相容性好且具有多功能响应性的明胶基 binder[J]. Nature, 2010, 463(7279): 339-343.
[17] CUSHING M C, ANSETH K S. Materials science. Hydrogel cell
水凝胶复合材料,以应用于不同领域已成为未来的
cultures[J]. Science, 2007, 316(5828): 1133-1134.
重点研究方向。综合近几年水凝胶的发展趋势,研 [18] PARK M H, JOO M K, CHOI B G, et al. Biodegradable thermogels[J].
究者致力于为满足某一性能方面的特定需求而进行 Accounts of Chemical Research, 2012, 45(3): 424-433.
[19] ZHAO W, JIN X, YANG C, et al. Degradable natural polymer
集中研究。以简单、经济、智能的方式改善水凝胶 hydrogels for articular cartilage tissue engineering[J]. Journal of
的性能,并且不使用有机溶剂或无毒交联剂来合成 Chemical Technology and Biotechnology, 2013, 88(3): 327-339.
[20] SAARAI A, SEDLACEK T, KASPARKOVA V, et al. On the
水凝胶将成为研究者一致追求的目标。如何将功能
characterization of sodium alginate/gelatine-based hydrogels for
性水凝胶复合材料应用到日常生活中,实现工业化 wound dressing[J]. Journal of Applied Polymer Science, 2012,
生产,不断挖掘水凝胶的应用潜力,还需要开展大 126(S1): E79-E88.
[21] HOZUMI T, KAGEYAMA T, OHTA S, et al. Injectable hydrogel
量的研究工作。 with slow degradability composed of gelatin and hyaluronic acid
cross-linked by Schiff’s base formation[J]. Biomacromolecules, 2017,
参考文献: 19(2): 288-297.
[22] TAYLOR D L, PANHUIS M I H. Self-healing hydrogels[J].
[1] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering Advanced Materials, 2016, 28(41): 9060-9093.
hydrogels[J]. Science, 2017, 356(6337): eaaf3627.
[23] CHEN M F (陈密发), LIU Y Q (刘永泉), WANG J (王静), et al.
[2] QIN Z H, DONG D Y, YAO M M, et al. Freezing-tolerant
supramolecular organohydrogel with high toughness, thermoplasticity, Advances in self-healing materials with hydrogen bonding interaction[J].
and healable and adhesive properties[J]. ACS Applied Materials & Journal of Ludong University (鲁东大学学报), 2018, 34(2): 150-156.
Interfaces, 2019, 11(23): 21184-21193. [24] WANG J, TANG F, WANG Y, et al. Self-healing and highly
[3] THÉRIEN-AUBIN H, WU Z L, NIE Z H, et al. Multiple shape stretchable gelatin hydrogel for self-powered strain sensor[J]. ACS
Applied Materials & Interfaces, 2020, 12(1): 1558-1566.
transformations of composite hydrogel sheets[J]. Journal of the
American Chemical Society, 2013, 135(12): 4834-4839. [25] ZHANG G Z, LYU L, DENG Y H, et al. Self-healing gelatin
[4] IWASO K, TAKASHIMA Y, HARADA A. Fast response dry-type hydrogels cross-linked by combining multiple hydrogen bonding and
artificial molecular muscles with [c2]daisy chains[J]. Nature Chemistry, ionic coordination[J]. Macromolecular Rapid Communications, 2017,
2016, 8(6): 625-632. 38(12): 1700018.
[26] LEI J F, LI X Y, WANG S, et al. Facile fabrication of biocompatible
[5] KIM Y S, LIU M J, ISHIDA Y, et al. Thermoresponsive actuation
enabled by permittivity switching in an electrostatically anisotropic gelatin-based self-healing hydrogel[J]. ACS Applied Polymer Materials,
hydrogel[J]. Nature Materials, 2015, 14(10): 1002-1007. 2019, 1(6): 1350-1358.
[6] WU J F, WANG H T, SU Z W, et al. Highly flexible and sensitive [27] WANG S, LEI J F, YI X L, et al. Fabrication of polypyrrole-grafted
wearable e-skin based on graphite nanoplatelet and polyurethane gelatin-based hydrogel with conductive, self-healing, and injectable
nanocomposite films in mass industry production available[J]. ACS properties[J]. ACS Applied Polymer Materials, 2020, 2(7): 3016-3023.
Applied Materials & Interfaces, 2017, 9(44): 38745-38754. [28] REN K, CHENG Y, HUANG C, et al. Self-healing conductive
[7] ZHANG Y L, FANG Y S, LI J, et al. Dual-mode electronic skin with hydrogels based on alginate, gelatin and polypyrrole serve as a
integrated tactile sensing and visualized injury warning[J]. ACS repairable circuit and a mechanical sensor[J]. Journal of Materials
Applied Materials & Interfaces, 2017, 9(42): 37493-37500. Chemistry B, 2019, 7(37): 5704-5712.
[8] LEI Z Y, WANG Q K, SUN S T, et al. A bioinspired mineral [29] JAHAN I, GEORGE E, SAXENA N, et al. Silver nanoparticle
hydrogel as a self-healable, mechanically adaptable ionic skin for entrapped soft GelMA gels as prospective scaffolds for wound
highly sensitive pressure sensing[J]. Advanced Materials, 2017, 29(22): healing[J]. ACS Applied Bio Materials, 2019, 2(5): 1802-1814.
1700321. [30] XU W G, DONG S J, HAN Y P, et al. Hydrogels as antibacterial
[9] ZHONG W B, LIU Q Z, WU Y Z, et al. A nanofiber based artificial biomaterials[J]. Current Pharmaceutical Design, 2018, 24(8): 843-854.
electronic skin with high pressure sensitivity and 3D conformability[J]. [31] LI S Q, DONG S J, XU W G, et al. Antibacterial hydrogels[J].
Nanoscale, 2016, 8(24): 12105-12112. Advanced Science, 2018, 5(5): 1700527.
[10] CHORTOS A, LIU J, BAO Z N. Pursuing prosthetic electronic [32] LE T P, LEE Y, THI T T H, et al. Catechol-rich gelatin hydrogels in
skin[J]. Nature Materials, 2016, 15(9): 937-950. situ hybridizations with silver nanoparticle for enhanced antibacterial
[11] WANG C, HWANG D, YU Z B, et al. User-Interactive electronic activity[J]. Materials Science and Engineering: C, 2018, 92: 52-60.