Page 23 - 《精细化工》2020年第2期
P. 23
第 2 期 王学川,等: 功能性明胶基水凝胶的分类及研究进展 ·225·
[33] YI X, HE J P, WANG X L, et al. Tunable mechanical, antibacterial, film leads to integrated flexible supercapacitors with superior
and cytocompatible hydrogels based on a functionalized dual performance[J]. Advanced Materials, 2015, 27(45): 7451-7457.
network of metal coordination bonds and covalent crosslinking[J]. [53] ZHONG R B, TANG Q, WANG S P, et al. Self-assembly of
ACS Applied Materials & Interfaces, 2018, 10(7): 6190-6198. enzyme-like nanofibrous G-molecular hydrogel for printed flexible
[34] ZHOU Y, ZHAO Y H, WANG L, et al. Radiation synthesis and electrochemical sensors[J]. Advanced Materials, 2018, 30(12): 1706887.
characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel[J]. [54] LI W W, GAO F X, WANG X Q, et al. Strong and robust
Radiation Physics and Chemistry, 2012, 81(5): 553-560. polyaniline-based supramolecular hydrogels for flexible supercapacitors[J].
[35] ZHOU W T (周雯婷), GUO Y Z (郭吟竹), LI X M (李兴茂), et al. Angewandte Chemie, 2016, 55(32): 9196-9201.
Preparation and performance of hydrogel dressing bonded with [55] YANG J, WANG X, LI B, et al. Novel iron/cobalt-containing
antimicrobial groups[J]. New Chemical Materials (化工新型材料), polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered
2016, 44(6): 226-229. overall water splitting[J]. Advanced Functional Materials, 2017,
[36] JIANG Y H, WANG Y, LI Q, et al. Natural polymer-based 27(17): 1306497.
stimuli-responsive hydrogels[J]. Current Medicinal Chemistry, 2020, [56] SHI Y, PAN L J, LIU B R, et al. Nanostructured conductive
27(16): 2631-2657. polypyrrole hydrogels as high-performance, flexible supercapacitor
[37] WARD M A, GEORGIOU T K. Thermoresponsive polymers for electrodes[J]. Journal of Materials Chemistry, 2014, 2(17): 6086-6091.
biomedical applications[J]. Polymers, 2011, 3(3): 1215-1242. [57] SPENCER A R, PRIMBETOVA A, KOPPES A N, et al.
[38] LIU L, ZHANG Y, YU S J, et al. pH-and amylase-responsive Electroconductive gelatin methacryloyl-PEDOT:PSS composite hydrogels:
carboxymethyl starch/poly (2-isobutyl-acrylic acid) hybrid microgels Design, synthesis, and properties[J]. ACS Biomaterials Science &
as effective enteric carriers for oral insulin delivery[J]. Biomacromolecules, Engineering, 2018, 4(5): 1558-1567.
2018, 19(6): 2123-2136. [58] YAO B W, WANG H Y, ZHOU Q Q, et al. Ultrahigh-conductivity
[39] QU J, ZHAO X, MA P X, et al. Injectable antibacterial conductive polymer hydrogels with arbitrary structures[J]. Advanced Materials,
hydrogels with dual response to an electric field and pH for localized 2017, 29(28): 1700974.
“smart” drug release[J]. Acta Biomaterialia, 2018, 72: 55-69. [59] RONG Q F, LEI W W, LIU M J. Conductive hydrogels as smart
[40] QIU Y, PARK K. Environment-sensitive hydrogels for drug materials for flexible electronic devices[J]. Chemistry-A European
delivery[J]. Advanced Drug Delivery Reviews, 2001, 53(3): 321-339. Journal, 2018, 24(64): 16930-16943.
[41] GARNICA-PALAFOX I M, SÁNCHEZ-ARÉVALO F M. Influence [60] ZHAO F, SHI Y, PAN L J, et al. Multifunctional nanostructured
of natural and synthetic crosslinking reagents on the structural and conductive polymer gels: Synthesis, properties, and applications[J].
mechanical properties of chitosan-based hybrid hydrogels[J]. Carbohydrate Accounts of Chemical Research, 2017, 50(7): 1734-1743.
Polymers, 2016, 151: 1073-1081. [61] DENG H, LIN L, JI M Z, et al. Progress on the morphological
[42] DONOHUE J. The hydrogen bond in organic crystals[J]. The Journal control of conductive network in conductive polymer composites and
of Physical Chemistry, 1952, 56(4): 502-510. the use as electroactive multifunctional materials[J]. Progress in
[43] NATANSOHN A, ROCHON P. Photoinduced motions in azo-containing Polymer Science, 2014, 39(4): 627-655.
polymers[J]. Chemical Reviews, 2002, 102(11): 4139-4176. [62] SHI Y, PENG L L, DING Y, et al. Nanostructured conductive
[44] ZHANG G F, CHEN T, LI C, et al. Spiropyran-based molecular polymers for advanced energy storage[J]. Chemical Society Reviews,
photoswitches[J]. Chinese Journal of Organic Chemistry, 2013, 33(5): 2015, 44(19): 6684-6696.
927-942. [63] LI S, CHENG C, THOMAS A. Carbon-based microbial-fuel-cell
[45] KIM A R, LEE S L, PARK S N. Properties and in vitro drug release electrodes: From conductive supports to active catalysts[J].
of pH-and temperature-sensitive double cross-linked interpenetrating Advanced Materials, 2017, 29(8): 1602547.
polymer network hydrogels based on hyaluronic acid/poly [64] ZHANG C, LV W, TAO Y, et al. Towards superior volumetric
(N-isopropylacrylamide) for transdermal delivery of luteolin[J]. International performance: Design and preparation of novel carbon materials for
Journal of Biological Macromolecules, 2018, 118: 731-740. energy storage[J]. Energy & Environmental Science, 2015, 8(5):
[46] PENG R (彭锐), ZHANG J J (张晶晶), DU C G (杜春贵), et al. 1390-1403.
Progress in preparation and controlled release technology of thermo- [65] SHAO Y L, El-KADY M F, WANG L J, et al. Graphene-based
sensitive antibacterial hydrogels[J]. Chemistry (化学通报), 2019, materials for flexible supercapacitors[J]. Chemical Society Reviews,
83(1): 10-16. 2015, 44(11): 3639-3665.
[47] EROL O, PANTULA A, LIU W Q, et al. Transformer hydrogels: A [66] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor
review[J]. Advanced Materials and Technologies, 2019, 4(4): 1900043. electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[48] WANG R (王蕊), HAN Q Q (韩倩倩), WANG C R (王春仁). On [67] AHN Y, LEE H, LEE D, et al. Highly conductive and flexible silver
research progress of thermo-sensitive biomaterials[J]. Chinese nanowire-based microelectrodes on biocompatible hydrogel[J]. ACS
Pharmaceutical Affairs (中国药事), 2019, 33(10): 1167-1173. Applied Materials & Interfaces, 2014, 6(21): 18401-18407.
[49] ALDANA A A, RIALHERMIDA M I, ABRAHAM G A, et al. [68] GOLIKAND A N, DIDEHBAN K, RAHIMI R. Investigation of the
Temperature-sensitive biocompatible IPN hydrogels based on poly(NIPA- properties of conductive hydrogel composite containing Zn particles[J].
PEGdma) and photocrosslinkable gelatin methacrylate[J]. Soft Materials, Journal of Applied Polymer Science, 2012, 126(2): 436-441.
2017, 15(4): 341-349. [69] SHIPWAY A N, WILLNER Ⅰ. Nanoparticles as structural and functional
[50] SUI M Y (隋美玉), LIU X S (刘夕升), ZHAO C (赵聪), et al. units in surface-confined architectures[J]. Chemical Communications,
Synthesis and properties of gelatin-based thermo-sensitive hydrogels[J]. 2001, (20): 2035-2045.
Polymer Materials Science and Engineering (高分子材料科学与工 [70] LIN J M, TANG Q W, WU J H. The synthesis and electrical
程), 2019, 35(7): 13-17. conductivity of a polyacrylamide/Cu conducting hydrogel[J]. Reactive
[51] CHEN K (陈垦), PENG J (彭静), LI J Q (李久强), et al. Radiation and Functional Polymers, 2007, 67(6): 489-494.
synthesis and properties of gelatin/polyacrylic acid/poly(N-isopropyl [71] DEVAKI S J, NARAYANAN R K, SAROJAM S. Electrically
acrylamide) shape-memory hydrogels with high strength[J]. Journal conducting silver nanoparticle-polyacrylic acid hydrogel by in situ
of Radiation Research and Radiation Processing (辐射研究与辐射工 reduction and polymerization approach[J]. Materials Letters, 2014,
艺学报), 2020, 38(4): 27-34. 116: 135-138.
[52] WANG K, ZHANG X, LI C, et al. Chemically crosslinked hydrogel (下转第 248 页)