Page 23 - 《精细化工》2020年第2期
P. 23

第 2 期                        王学川,等:  功能性明胶基水凝胶的分类及研究进展                                   ·225·


            [33]  YI X, HE J P, WANG X L, et al. Tunable mechanical, antibacterial,   film leads to integrated flexible supercapacitors with superior
                 and cytocompatible hydrogels based on a functionalized dual   performance[J]. Advanced Materials, 2015, 27(45): 7451-7457.
                 network of metal  coordination bonds  and covalent crosslinking[J].   [53]  ZHONG R  B,  TANG Q,  WANG S P,  et al. Self-assembly of
                 ACS Applied Materials & Interfaces, 2018, 10(7): 6190-6198.   enzyme-like nanofibrous G-molecular hydrogel for  printed flexible
            [34]  ZHOU  Y,  ZHAO Y H, WANG  L,  et al. Radiation synthesis and   electrochemical sensors[J]. Advanced Materials, 2018, 30(12): 1706887.
                 characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel[J].   [54]  LI W W, GAO F X, WANG X  Q,  et al. Strong  and robust
                 Radiation Physics and Chemistry, 2012, 81(5): 553-560.   polyaniline-based supramolecular hydrogels for flexible supercapacitors[J].
            [35]  ZHOU W T (周雯婷), GUO Y Z (郭吟竹), LI X M (李兴茂), et al.   Angewandte Chemie, 2016, 55(32): 9196-9201.
                 Preparation and  performance of hydrogel  dressing bonded with   [55]  YANG J,  WANG X, LI  B,  et al. Novel iron/cobalt-containing
                 antimicrobial groups[J]. New Chemical Materials (化工新型材料),   polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered
                 2016, 44(6): 226-229.                             overall water splitting[J]. Advanced  Functional Materials, 2017,
            [36]  JIANG Y H,  WANG Y,  LI Q,  et al. Natural polymer-based   27(17): 1306497.
                 stimuli-responsive hydrogels[J]. Current Medicinal Chemistry, 2020,   [56]  SHI Y, PAN L J, LIU B R,  et al. Nanostructured conductive
                 27(16): 2631-2657.                                polypyrrole hydrogels as high-performance, flexible supercapacitor
            [37]  WARD  M A, GEORGIOU  T K. Thermoresponsive polymers for   electrodes[J]. Journal of Materials Chemistry, 2014, 2(17): 6086-6091.
                 biomedical applications[J]. Polymers, 2011, 3(3): 1215-1242.   [57]  SPENCER A R, PRIMBETOVA  A, KOPPES A N,  et al.
            [38]  LIU L, ZHANG  Y, YU S J,  et al. pH-and amylase-responsive   Electroconductive gelatin methacryloyl-PEDOT:PSS composite hydrogels:
                 carboxymethyl starch/poly (2-isobutyl-acrylic acid) hybrid microgels   Design, synthesis, and properties[J].  ACS Biomaterials  Science &
                 as effective enteric carriers for oral insulin delivery[J]. Biomacromolecules,   Engineering, 2018, 4(5): 1558-1567.
                 2018, 19(6): 2123-2136.                       [58]  YAO B W, WANG H Y, ZHOU Q Q, et al. Ultrahigh-conductivity
            [39]  QU J, ZHAO X, MA P X, et al. Injectable antibacterial conductive   polymer hydrogels with arbitrary structures[J]. Advanced Materials,
                 hydrogels with dual response to an electric field and pH for localized   2017, 29(28): 1700974.
                 “smart” drug release[J]. Acta Biomaterialia, 2018, 72: 55-69.   [59]  RONG Q F, LEI  W  W, LIU M J. Conductive hydrogels as smart
            [40]  QIU Y, PARK  K.  Environment-sensitive hydrogels for drug   materials for  flexible electronic devices[J]. Chemistry-A European
                 delivery[J]. Advanced Drug Delivery Reviews, 2001, 53(3): 321-339.   Journal, 2018, 24(64): 16930-16943.
            [41]  GARNICA-PALAFOX I M, SÁNCHEZ-ARÉVALO F M. Influence   [60]  ZHAO F, SHI  Y,  PAN L J,  et al. Multifunctional  nanostructured
                 of natural and synthetic crosslinking reagents on the structural and   conductive polymer gels: Synthesis, properties, and applications[J].
                 mechanical properties of chitosan-based hybrid hydrogels[J]. Carbohydrate   Accounts of Chemical Research, 2017, 50(7): 1734-1743.
                 Polymers, 2016, 151: 1073-1081.               [61]  DENG H, LIN L, JI M  Z,  et al. Progress on the morphological
            [42]  DONOHUE J. The hydrogen bond in organic crystals[J]. The Journal   control of conductive network in conductive polymer composites and
                 of Physical Chemistry, 1952, 56(4): 502-510.      the use as electroactive  multifunctional materials[J]. Progress in
            [43]  NATANSOHN A, ROCHON P. Photoinduced motions in azo-containing   Polymer Science, 2014, 39(4): 627-655.
                 polymers[J]. Chemical Reviews, 2002, 102(11): 4139-4176.   [62]  SHI  Y, PENG L  L, DING  Y,  et al. Nanostructured conductive
            [44]  ZHANG  G F, CHEN T, LI C,  et al. Spiropyran-based  molecular   polymers for advanced energy storage[J]. Chemical Society Reviews,
                 photoswitches[J]. Chinese Journal of Organic Chemistry,  2013, 33(5):   2015, 44(19): 6684-6696.
                 927-942.                                      [63]  LI S, CHENG C,  THOMAS  A.  Carbon-based microbial-fuel-cell
            [45]  KIM A R, LEE S L, PARK S N. Properties and in vitro drug release   electrodes: From conductive supports to active catalysts[J].
                 of pH-and temperature-sensitive double cross-linked interpenetrating   Advanced Materials, 2017, 29(8): 1602547.
                 polymer network hydrogels  based on hyaluronic acid/poly   [64]  ZHANG C, LV  W,  TAO Y, et  al.  Towards superior volumetric
                 (N-isopropylacrylamide) for transdermal delivery of luteolin[J]. International   performance: Design and preparation of novel carbon materials for
                 Journal of Biological Macromolecules, 2018, 118: 731-740.   energy storage[J]. Energy & Environmental Science, 2015, 8(5):
            [46]  PENG R (彭锐),  ZHANG J J (张晶晶), DU C G (杜春贵),  et al.   1390-1403.
                 Progress in preparation and controlled release technology of thermo-   [65]  SHAO Y L, El-KADY M F,  WANG L J,  et al. Graphene-based
                 sensitive antibacterial hydrogels[J]. Chemistry (化学通报), 2019,   materials for flexible supercapacitors[J]. Chemical Society Reviews,
                 83(1): 10-16.                                     2015, 44(11): 3639-3665.
            [47]  EROL O, PANTULA A, LIU W Q, et al. Transformer hydrogels: A   [66]  ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor
                 review[J]. Advanced Materials and Technologies, 2019, 4(4): 1900043.   electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
            [48] WANG  R (王蕊), HAN Q Q (韩倩倩), WANG  C R (王春仁). On   [67]  AHN Y, LEE H, LEE D, et al. Highly conductive and flexible silver
                 research progress of thermo-sensitive biomaterials[J]. Chinese   nanowire-based microelectrodes on biocompatible hydrogel[J]. ACS
                 Pharmaceutical Affairs (中国药事), 2019, 33(10): 1167-1173.   Applied Materials & Interfaces, 2014, 6(21): 18401-18407.
            [49]  ALDANA A A,  RIALHERMIDA M I, ABRAHAM  G A,  et al.   [68]  GOLIKAND A N, DIDEHBAN K, RAHIMI R. Investigation of the
                 Temperature-sensitive biocompatible IPN hydrogels based on poly(NIPA-   properties of conductive hydrogel composite containing Zn particles[J].
                 PEGdma) and photocrosslinkable gelatin methacrylate[J]. Soft Materials,   Journal of Applied Polymer Science, 2012, 126(2): 436-441.
                 2017, 15(4): 341-349.                         [69]  SHIPWAY A N, WILLNER  Ⅰ. Nanoparticles as structural and functional
            [50]  SUI M  Y (隋美玉), LIU X S (刘夕升), ZHAO C (赵聪), et al.   units in surface-confined architectures[J]. Chemical Communications,
                 Synthesis and properties of gelatin-based thermo-sensitive hydrogels[J].   2001, (20): 2035-2045.
                 Polymer Materials Science  and Engineering (高分子材料科学与工  [70]  LIN J M, TANG  Q W, WU J H.  The synthesis and electrical
                 程), 2019, 35(7): 13-17.                           conductivity of a polyacrylamide/Cu conducting hydrogel[J]. Reactive
            [51]  CHEN K (陈垦), PENG J (彭静), LI J Q (李久强), et al. Radiation   and Functional Polymers, 2007, 67(6): 489-494.
                 synthesis and properties of gelatin/polyacrylic acid/poly(N-isopropyl   [71]  DEVAKI S J, NARAYANAN R K, SAROJAM S. Electrically
                 acrylamide) shape-memory hydrogels with high strength[J]. Journal   conducting silver nanoparticle-polyacrylic acid hydrogel  by in situ
                 of Radiation Research and Radiation Processing (辐射研究与辐射工  reduction and polymerization approach[J]. Materials Letters, 2014,
                 艺学报), 2020, 38(4): 27-34.                         116: 135-138.
            [52]  WANG K, ZHANG X, LI C, et al. Chemically crosslinked hydrogel               (下转第 248 页)
   18   19   20   21   22   23   24   25   26   27   28