Page 118 - 《精细化工》2021年第3期
P. 118
·538· 精细化工 FINE CHEMICALS 第 38 卷
[12] SHON J, KIM H, LEE K. Improved heat storage rate for an enthalpy-based lattice Boltzmann simulations of melting in paraffin/
automobile coolant waste heat recovery system using phase-change metal foam composite phase change materials[J]. International
material in a fin-tube heat exchanger[J]. Applied Energy, 2014, 113: Journal of Heat and Mass Transfer, 2020, 155: 119870.
680-689. [27] WANG X L, LI B, QU Z G, et al. Effects of graphite microstructure
[13] LUO X, WANG J H, DOONER M, et al. Overview of current evolution on the anisotropic thermal conductivity of expanded
development in electrical energy storage technologies and the graphite/paraffin phase change materials and their thermal energy
application potential in power system operation[J]. Applied Energy, storage performance[J]. International Journal of Heat and Mass
2015, 137: 511-536. Transfer, 2020, 155: 119853.
[14] WANG X, ZHANG Y P, XIAO W, et al. Review on thermal [28] ZHAO Y Q, JIN L, ZOU B Y, et al. Expanded graphite-paraffin
performance of phase change energy storage building envelope[J]. composite phase change material: Effect of particle size on the
Science Bulletin, 2009, 54(6): 920-928. composite structure and properties[J]. Applied Thermal Engineering,
[15] KHADIRAN T, HUSSEIN M Z, ZAINAL Z, et al. Encapsulation 2020, 171: 115015.
techniques for organic phase change materials as thermal energy [29] ZHOU Y, LI C H, WU H, et al. Construction of hybrid graphene
storage medium: A review[J]. Solar Energy Materials and Solar oxide/graphene nanoplates shell in paraffin microencapsulated phase
Cells, 2015, 143: 78-98. change materials to improve thermal conductivity for thermal energy
[16] YU S Y, WANG X D, WU D Z. Microencapsulation of n-octadecane storage[J]. Colloids and Surfaces A-Physicochemical and
phase change material with calcium carbonate shell for enhancement Engineering Aspects, 2020, 597: 124780.
of thermal conductivity and serving durability: Synthesis, [30] YANG J, JIA Y L, BING N C, et al. Reduced graphene oxide and
microstructure, and performance evaluation[J]. Applied Energy, zirconium carbide co-modified melamine sponge/paraffin wax
2014, 114: 632-643. composites as new form-stable phase change materials for
[17] QIU X L, LI W, SONG G L, et al. Microencapsulated n-octadecane photothermal energy conversion and storage[J]. Applied Thermal
with different methylmethacrylate-based copolymer shells as phase Engineering, 2009, 163: 114412.
change materials for thermal energy storage[J]. Energy, 2012, 46(1): [31] WU X H, WANG C X, WANG Y L, et al. Experimental study of
188-199. thermo-physical properties and application of paraffin-carbon
[18] LI Y, ZHAO L, WANG H, et al. Microencapsulated -octadecane with nanotubes composite phase change materials[J]. International Journal
TiO 2-doped silk fibroin shell for thermal energy storage and of Heat and Mass Transfer, 2019, 140: 671-677.
UV-shielding[J]. Journal of Physics and Chemistry of Solids, 2019, [32] SHEN H, CAI C, GUO J, et al. Fabrication of oriented h-BN
134: 97-104. scaffolds for thermal interface materials[J]. RSC Advances, 2016,
[19] TANG F, LIU L K, ALVA G, et al. Synthesis and properties of 6(20): 16489-16494.
microencapsulated octadecane with silica shell as shape-stabilized [33] QIAN Z C, SHEN H, FANG X, et al. Phase change materials of
thermal energy storage materials[J]. Solar Energy Materials and paraffin in h-BN porous scaffolds with enhanced thermal conductivity
Solar Cells, 2017, 160: 1-6. and form stability[J]. Energy and Buildings, 2018, 158: 1184-1188.
[20] QU Y, WANG S, TIAN Y, et al. Comprehensive evaluation of [34] HAN W F, WANG L X, ZHANG R, et al. Water-dispersible boron
paraffin-HDPE shape stabilized PCM with hybrid carbon nano- nitride nanospheres with high thermal conductivity for heat-transfer
additives[J]. Applied Thermal Engineering, 2019, 163: 114404. nanofluids[J]. European Journal of Inorganic Chemistry, 2017, (46):
[21] CHEN F, WOLCOTT M. Polyethylene/paraffin binary composites 5466-5474.
for phase change material energy storage in building: A morphology, [35] QIAN Z C, SHEN H, FANG X, et al. Phase change materials of
thermal properties, and paraffin leakage study[J]. Solar Energy paraffin in h-BN porous scaffolds with enhanced thermal conductivity
Materials and Solar Cells, 2015, 137: 79-85. and form stability[J]. Energy and Buildings, 2018, 158: 1184-1188.
[22] KRAPA I, MIKOVA G, LUYT A S. Polypropylene as a potential [36] FANG X, FAN L W, DING Q, et al. Thermal energy storage
matrix for the creation of shape stabilized phase change materials[J]. performance of paraffin-based composite phase change materials
European Polymer Journal, 2007, 43(3): 895-907. filled with hexagonal boron nitride nanosheets[J]. Energy Conversion
[23] XIAO M, FENG B, GONG K C. Preparation and performance of and Management, 2014, 80: 103-109.
shape stabilized phase change thermal storage materials with high [37] HAN W F, BAI Y F, LIU S C, et al. Enhanced thermal conductivity
thermal conductivity[J]. Energy Conversion and Management, 2002, of commercial polystyrene filled with core-shell structured
43(1): 103-108. BN@PS[J]. Composites, Part A: Applied Science and Manufacturing,
[24] ZHANG Z S, ALVA G, GU M, et al. Experimental investigation on 2017, 102: 218-227.
n-octadecane/polystyrene/expanded graphite composites as form- [38] HAN W F, GE C H, ZHANG R, et al. Boron nitride foam as a
stable thermal energy storage materials[J]. Energy, 2018, 157: polymer alternative in packaging phase change materials: Synthesis,
625-632. thermal properties and shape stability[J]. Apply Energy, 2019, 238:
[25] LIU X (刘星), WANG S J (汪树军), LIU H Y (刘红研). Research of 942-951.
paraffin-polyolefins as form-stable phase change materials[J]. Fine [39] SU K H, SU C Y, CHO C T, et al. Development of thermally
Chemicals (精细化工), 2006, 23(3): 209-211, 214. conductive polyurethane composite by low filler loading of spherical
[26] GAEDTKE M, ABISHEK S, MEAD-HUNTER R, et al. Total BN/PMMA composite powder[J]. Nature, 2019, 9: 14397.