Page 118 - 《精细化工》2021年第3期
P. 118

·538·                             精细化工   FINE CHEMICALS                                 第 38 卷

            [12]  SHON J, KIM H, LEE K. Improved heat storage rate for an   enthalpy-based lattice Boltzmann simulations of melting in paraffin/
                 automobile coolant waste heat recovery system using phase-change   metal foam  composite phase change  materials[J]. International
                 material in a fin-tube heat exchanger[J]. Applied Energy, 2014, 113:   Journal of Heat and Mass Transfer, 2020, 155: 119870.
                 680-689.                                      [27]  WANG X L, LI B, QU Z G, et al. Effects of graphite microstructure
            [13]  LUO X,  WANG J H, DOONER M,  et al. Overview  of current   evolution on the  anisotropic thermal conductivity of  expanded
                 development in electrical energy storage technologies and the   graphite/paraffin phase change materials and their thermal energy
                 application potential in power system operation[J]. Applied Energy,   storage performance[J]. International Journal of Heat and Mass
                 2015, 137: 511-536.                               Transfer, 2020, 155: 119853.
            [14]  WANG X,  ZHANG Y P, XIAO W,  et al. Review on thermal   [28]  ZHAO Y Q, JIN  L, ZOU  B  Y,  et al. Expanded  graphite-paraffin
                 performance of phase change energy storage building envelope[J].   composite phase change material: Effect of particle size on the
                 Science Bulletin, 2009, 54(6): 920-928.           composite structure and properties[J]. Applied Thermal Engineering,
            [15]  KHADIRAN  T, HUSSEIN M Z,  ZAINAL Z,  et al.  Encapsulation   2020, 171: 115015.
                 techniques for organic phase change  materials  as thermal energy   [29]  ZHOU Y, LI  C H,  WU H,  et al.  Construction of hybrid graphene
                 storage medium: A review[J]. Solar Energy Materials and Solar   oxide/graphene nanoplates shell in paraffin microencapsulated phase
                 Cells, 2015, 143: 78-98.                          change materials to improve thermal conductivity for thermal energy
            [16]  YU S Y, WANG X D, WU D Z. Microencapsulation of n-octadecane   storage[J]. Colloids and Surfaces A-Physicochemical and
                 phase change material with calcium carbonate shell for enhancement   Engineering Aspects, 2020, 597: 124780.
                 of thermal  conductivity and serving durability:  Synthesis,   [30]  YANG J, JIA Y L, BING N C, et al. Reduced graphene oxide and
                 microstructure, and performance  evaluation[J]. Applied Energy,   zirconium carbide co-modified melamine sponge/paraffin wax
                 2014, 114: 632-643.                               composites as new form-stable phase  change  materials for
            [17]  QIU X L, LI W, SONG G L, et al. Microencapsulated n-octadecane   photothermal energy conversion  and  storage[J].  Applied Thermal
                 with different methylmethacrylate-based copolymer shells as phase   Engineering, 2009, 163: 114412.
                 change materials for thermal energy storage[J]. Energy, 2012, 46(1):   [31]  WU X H, WANG  C X, WANG Y L,  et al. Experimental study of
                 188-199.                                          thermo-physical properties and application of paraffin-carbon
            [18]  LI Y, ZHAO L, WANG H, et al. Microencapsulated -octadecane with   nanotubes composite phase change materials[J]. International Journal
                 TiO 2-doped silk fibroin shell for thermal  energy storage and   of Heat and Mass Transfer, 2019, 140: 671-677.
                 UV-shielding[J]. Journal of Physics and Chemistry of Solids, 2019,   [32]  SHEN H, CAI C, GUO J,  et al.  Fabrication of oriented  h-BN
                 134: 97-104.                                      scaffolds for  thermal interface materials[J]. RSC Advances, 2016,
            [19]  TANG F,  LIU L  K, ALVA G,  et al. Synthesis and properties of   6(20): 16489-16494.
                 microencapsulated octadecane with silica shell as shape-stabilized   [33]  QIAN Z C, SHEN H, FANG X,  et al. Phase change materials of
                 thermal energy storage materials[J].  Solar Energy Materials and   paraffin in h-BN porous scaffolds with enhanced thermal conductivity
                 Solar Cells, 2017, 160: 1-6.                      and form stability[J]. Energy and Buildings, 2018, 158: 1184-1188.
            [20]  QU Y,  WANG S,  TIAN Y,  et al.  Comprehensive evaluation of   [34]  HAN W F, WANG L X, ZHANG R, et al. Water-dispersible boron
                 paraffin-HDPE shape stabilized PCM with hybrid carbon nano-   nitride nanospheres with high thermal conductivity for heat-transfer
                 additives[J]. Applied Thermal Engineering, 2019, 163: 114404.     nanofluids[J]. European Journal of Inorganic Chemistry, 2017, (46):
            [21]  CHEN F, WOLCOTT M. Polyethylene/paraffin  binary composites   5466-5474.
                 for phase change material energy storage in building: A morphology,   [35]  QIAN  Z  C, SHEN H, FANG  X,  et al.  Phase change materials  of
                 thermal properties, and paraffin leakage study[J]. Solar Energy   paraffin in h-BN porous scaffolds with enhanced thermal conductivity
                 Materials and Solar Cells, 2015, 137: 79-85.      and form stability[J]. Energy and Buildings, 2018, 158: 1184-1188.
            [22]  KRAPA I, MIKOVA G,  LUYT A  S.  Polypropylene as a potential   [36]  FANG X, FAN L W, DING Q,  et al. Thermal energy storage
                 matrix for the creation of shape stabilized phase change materials[J].   performance of paraffin-based composite phase change  materials
                 European Polymer Journal, 2007, 43(3): 895-907.     filled with hexagonal boron nitride nanosheets[J]. Energy Conversion
            [23]  XIAO M, FENG  B, GONG K  C. Preparation and performance of   and Management, 2014, 80: 103-109.
                 shape stabilized phase change thermal storage materials  with high   [37]  HAN W F, BAI Y F, LIU S C, et al. Enhanced thermal conductivity
                 thermal conductivity[J]. Energy Conversion and Management, 2002,   of commercial polystyrene filled with core-shell structured
                 43(1): 103-108.                                   BN@PS[J]. Composites, Part A: Applied Science and Manufacturing,
            [24]  ZHANG Z S, ALVA G, GU M, et al. Experimental investigation on   2017, 102: 218-227.
                 n-octadecane/polystyrene/expanded graphite  composites as  form-   [38]  HAN W F, GE C  H, ZHANG  R,  et al. Boron nitride foam  as  a
                 stable thermal energy storage materials[J]. Energy, 2018, 157:   polymer alternative in packaging phase change materials: Synthesis,
                 625-632.                                          thermal properties and shape stability[J]. Apply Energy, 2019, 238:
            [25]  LIU X (刘星), WANG S J (汪树军), LIU H Y (刘红研). Research of   942-951.
                 paraffin-polyolefins as form-stable  phase change  materials[J]. Fine   [39]  SU K H, SU  C Y, CHO C T,  et al. Development of thermally
                 Chemicals (精细化工), 2006, 23(3): 209-211, 214.      conductive polyurethane composite by low filler loading of spherical
            [26]  GAEDTKE M, ABISHEK S, MEAD-HUNTER R,  et al. Total   BN/PMMA composite powder[J]. Nature, 2019, 9: 14397.
   113   114   115   116   117   118   119   120   121   122   123