Page 185 - 《精细化工》2021年第3期
P. 185

2+
             第 3 期                  刘   娟,等:  双硫腙-Bmim[PF 6 ]对水中 Pb 的萃取分离性能初探                         ·605·

            地恢复萃取体系原有的萃取能力,并实现高效复用,                                cromium-containing electroplating wastewater[J]. Journal of  Water
                                                                   Chemistry and Technology, 2016, 38(1): 45-50.
            反萃率降低的原因可能是双硫腙-[Bmim][PF 6 ]萃取                     [9]   PRABHU S V, BASKAR R. Kinetics of heavy metal biosolubilization
                                  2+
            体系在重复利用中,Pb 络合物在该体系内的逐步                                from electroplating sludge: Effects of sulfur concentration[J]. Journal
                                                                   of the Korean Society for Applied Biological Chemistry, 2015, 58(2):
            富集。                                                    185-194.
                                                               [10]  SALCEDO A F M, BALLESTEROS  F C,  VILANDO  A C,  et al.
                 作为一种绿色溶剂,在萃取过程完成后,离子                              Nickel recovery from synthetic watts bath electroplating wastewater
            液体的回收再利用也非常重要。双硫腙-[Bmim][PF 6 ]                        by homogeneous fluidized bed granulation process[J]. Separation and
                                                                   Purification Technology, 2016, 169: 128-136.
            萃取体系在三次萃取/反萃操作后对料液相中 Pb                      2+    [11]  VERGARA M  A  V, LIJANOVA I V, LIKHANOVA N V,  et al.
                                                                   Recycling and recovery of ammonium-based ionic liquids after
            仍具有一定的萃取能力,可以实现回收利用。                                   extraction of metal cations from aqueous solutions[J]. Separation and
                                                                   Purification Technology, 2015, 155: 110-117.
            3   结论                                             [12]  YANG J J,  GUAN  W S. Lipase-catalyzed biodiesel production
                                                                   in[BMIM][PF 6][J]. Asian Journal of Chemistry, 2014, 26(10): 2865-
                                                                   2869.
                                            2+
                 以双硫腙-[Bmim][PF 6 ]对含 Pb 废水的萃取分                [13]  GOUVEIA T I A, SILVA A M T, RIBEIRO A R, et al. Liquid-liquid
                                                                   extraction as a simple tool to quickly quantify fourteen cytostatics in
            离性能进行了考察,探究了络合剂含量、萃取温度、                                urban wastewaters and access their impact in aquatic biota[J].
                                                                   Science of the Total Environment, 2020, 740: 139995.
                                                     2+
            料液相 pH 以及萃取体系与水相体积比对 Pb 萃取                         [14]  LISA F, THOMAS F, GUNDA K, et al. Ionic liquids for extraction of
            率的影响;同时在最佳萃取条件下,进行了反萃剂                                 metals and metal containing compounds from communal and
                                                                   industrial waste water[J]. Water Research, 2011, 45(15): 4601-4614.
            的筛选,并考察了反萃剂浓度及反萃温度对反萃率                             [15]  YANG  Z Z, TAN  Z J, LI F F,  et al. An effective method for the
                                                                   extraction and purification of chlorogenic acid from ramie
            的影响,获得了最佳反萃条件。                                         (Boehmeria nivea L.) leaves using acidic ionic liquids[J]. Industrial
                (1)最佳萃取条件为:络合剂含量为 0.72%、                           Crops & Products, 2016, 89: 78-86.
                                                               [16]  HE H L (何海亮). Research progress in extraction and separation of
            萃取温度为 35  ℃、料液相 pH=6、萃取体系与水相                           heavy metal ions by ionic liquids[J]. China Resources Comprehensive
                                                                   Utilization (中国资源综合利用), 2019, 37(6): 93-95.
                                            2+
            体积比为 1∶4,在此条件下,Pb 的萃取率可达                           [17]  CUI G K (崔国凯), LYU S Z (吕书贞), WANG J J (王键吉).
            98.0%。                                                 Functional ionic liquids for carbon dioxide capture and separation[J].
                                                                   CIESC Journal (化工学报), 2020, 71(1): 16-25, 429.
                (2)在最佳萃取条件下,双硫腙-[Bmim][PF 6 ]                  [18]  PEI Y C (裴渊超), NIU Y J (牛亚娟), ZHANG W J (张婉军), et al.
                            2+
                                  2+
                                        2+
            萃取体系可从 Cu 、Zn 和 Ni 存在的多元金属离                             Research progress of ionic liquid  microemulsion[J]. Scientia
                                                                    Sinica(Chimica) (中国科学:  化学), 2020, 50(2): 211-222.
                                      2+
            子共存体系中选择性萃取 Pb 。                                   [19]  LIU Q S (刘青山), ZHAO L  W (赵丽薇). Advances in  metal ion
                                                                   extraction with ionic liquids[J]. Journal of Shenyang Agricultural
                (3)从 7 种溶液中筛选出 HNO 3 溶液具有最佳                        University (沈阳农业大学学报), 2018, 49(4): 498-512.
            反萃性能,1.00 mol/L HNO 3 溶液在 35  ℃下,对负                [20]  JIANG P P (蒋平平), LI X T (李晓婷), LENG Y (冷炎),  et al.
                                                                   Preparation and chemical application of ionic liquids[J]. Chemical
                            2+
            载萃取体系中 Pb 的反萃率可达 97.0%。                                Industry and Engineering Progress  ( 化工 进展 ), 2014, 33(11):
                                                                   2815-2828.
                (4)萃取与反萃体系的二次复用实验结果显示,                         [21]  TOSHIYUKI I. Activation of lipase-catalyzed reactions using ionic
            在确保最佳条件下,获得的萃取与反萃体系用于萃                                 liquids for organic synthesis[J]. Advances in Biochemical
                                                                   Engineering/Biotechnology, 2019, 168: 79-104.
                     2+
            取水中 Pb ,具有较好的重复利用能力。                               [22]  YI L (易兰), LI W Y (李文英), FENG J (冯杰). Application of ionic
                                                                   liquids and  deep eutectic solvents in  the separation of coal-based
                                                                   liquids[J]. Chemical Industry and Engineering Progress (化工进展),
            参考文献:                                                  2020, 39(6): 2066-2078.
            [1]   NGUYEN X S, ZHANG  G K (张高科), LIAO Q L (廖庆玲).   [23]  LIU M (刘铭), ZHANG Y M (张依蒙), TIAN P (田鹏), et al. The
                 Research progress  on treatment methods of heavy metal ions  in   study of green solventionic liquids in materials and organic synthesis[J].
                 wastewater[J]. Shandong Industrial Technology (山东工业技术),   Shandong Chemical Industry (山东化工), 2018, 47(9): 40-41.
                 2017, (12): 53-54.                            [24]  RAFIEE E, MIRNEZAMI F, KAHRIZI M. SO 3H-functionalized
            [2]   LI J D (李季东), WEN D H (温冬花). Research on pollution  of   organic-inorganic ionic liquids based on polyoxometalates
                 heavy metals in water environment and its detection technology[J].   characterization and their application in C—C coupling reaction[J].
                 China Metal Bulletin (中国金属通报), 2020, (5): 214-215.     Journal of Molecular Structure, 2016, 1119: 332-339.
            [3]   XIE X J (谢晓君), WANG F Y (王方园), WANG G J (王光军), et al.   [25]  MU X L, YANG X D, ZHANG D J, et al. Theoretical study of the
                 Study on heavy  metal pollution in surface water in China[J].   reaction of chitosan monomer with 2, 3-epoxypropyl-trimethyl
                 Environmental Science and Management (环境科学与管理), 2017,   quaternary ammonium  chloride catalyzed by  an imidazolium-based
                 42(2): 31-34.                                     ionic liquid[J]. Carbohydrate Polymers, 2016, 146: 46-51.
            [4]   ZHANG F (张帆), HE S F (贺盛福), PENG Z Y (彭志远), et al. The   [26]  LI J N (李江纳). Basic research on design, synthesis and application
                 status-in-art and advance on the treatment of wastewater containing   of hydrophobic ionic liquid[D]. Kunming: Kunming University of
                 lead[J]. Huaxue Tongbao (化学通报), 2015, 78(5): 421-426, 437.     Science and Technology (昆明理工大学), 2014.
            [5]   WEI T Y (魏添昱), CHEN R (陈荣), MA T (马田), et al. Research   [27]  WANG B (王犇), ZHANG X Q (章效强), TU S H (涂盛辉), et al.
                                                                                                      2+
                 progress in the application of photocatalysis to the treatment of heavy   The process of ionic liquid extraction to Zn 2+  and Ni  ions[J].
                 metal ions in water[J]. Jiangxi Chemical Industry (江西化工), 2015,   Journal of Nanchang University (Engineering & Technology) (南昌
                 (5): 13-17.                                       大学学报:  工科版), 2017, 39(1): 8-12.
            [6]   FENG Y (冯宇), XU  L J (许立军), WU J  L (吴佳丽),  et al.   [28]  YANG Z J (杨志洁), GUO J (郭洁), DU J H (杜建华), et al. Rapid
                 Treatment of lead-containing wastewater by solvent extraction   determination of lead content in plant leaves with xylenol orange[J].
                 residue of lignite[J]. Coal Conversion (煤炭转化), 2019, 42(3): 90-96.     Physical Testing and Chemical Analysis (Part B Chemical Analysis)
            [7]   LI Y (李雅), FANG X Q (方向青),  DANG S X (党世雄),  et al.   (理化检验:  化学分册), 2000, (9): 412-414.
                 Influence of anions on removal of lead ions in water by reduced in   [29]  CHEN R T (陈仁坦), LIU Z C (刘植昌), MENG X H (孟祥海), et
                 water iron powder[J]. Chemistry & Bioengineering (化学与生物工  al. Advances in  heavy  metal ion extraction with ionic liquids[J].
                 程), 2018, 35(12): 43-45.                          Chemical Industry and Engineering  Progress (化工进展), 2013,
            [8]   MELNIK E S. Alternative design for electrocoagulation treatment of   32(11): 2757-2763, 2786.
   180   181   182   183   184   185   186   187   188   189   190