Page 32 - 《精细化工》2021年第3期
P. 32

·452·                             精细化工   FINE CHEMICALS                                 第 38 卷

            [4]   KOJIMA A,  TESHIMA K, SHIRAI  Y,  et al. Organometal halide   Advanced Functional Materials, 2011, 21(4): 756-763.
                 perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal   [23]  ZHANG H, WU Y Z, ZHANG W W,  et al. Low cost and stable
                 of the American Chemical Society, 2009, 131(17): 6050-6051.     quinoxaline-based hole-transporting materials with a D-A-D molecular
            [5]   ZHANG L  Z,  ZHOU X Y, LIU C,  et al. A review on solution-   configuration for efficient perovskite solar cells[J]. Chemical Science,
                 processable dopant-free small molecules as hole-transporting materials   2018, 9(27): 5919-5928.
                 for efficient perovskite solar cells[J]. Small Methods, 2020, 4(9):   [24]  XU P, LIU P, LI Y Y, et al. D-A-D-typed hole transport materials for
                 2000254.                                          efficient perovskite solar cells: Tuning photovoltaic properties via the
            [6]   IM J H, LEE C  R, LEE J W,  et al. 6.5% Efficient perovskite   acceptor group[J]. ACS Applied Materials & Interfaces, 2018,
                 quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088-   10(23): 19697-19703.
                 4093.                                         [25]  WU Y Z, ZHU W H,  ZAKEERUDDIN S M,  et al. Insight into
            [7]   KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized   D-A-π-A structured sensitizers: A promising route to highly efficient
                 all-solid-state submicron thin film mesoscopic solar cell with   and stable dye-sensitized solar cells[J]. ACS  Applied Materials &
                 efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591-597.     Interfaces, 2015, 7(18): 9307-9318.
            [8]   MENG L, YOU J B, GUO T F, et al. Recent advances in the inverted   [26]  LIU Y H, ZHAO J B, LI Z K, et al. Aggregation and morphology
                 planar structure of  perovskite solar cells[J]. Accounts  of  Chemical   control enables multiple cases of high-efficiency polymer solar
                 Research, 2016, 49(1): 155-165.                   cells[J]. Nature Communications, 2014, 5(1): 5293.
            [9]   ZHANG J (张婧), HE Y J (何有军), MIN J (闵杰). Recent progress   [27]  ZHOU X, KONG F T, SUN Y, et al. Dopant-free benzothiadiazole
                 in hybrid perovskite solar cells based on p-type small molecules as   bridged  hole transport materials for highly stable and efficient
                 hole transporting materials[J]. Acta Physico-Chimica Sinica (物理化  perovskite solar  cells[J]. Dyes  and Pigments, 2020, 173:
                 学学报), 2018, 34(11): 1221-1238.                    107954-107960.
            [10]  KRISHNA A,  GRIMSDALE A  C. Hole transporting materials for   [28]  ZHAO X J, QUAN Y Y, PAN H, et al. Novel donor-acceptor-donor
                 mesoscopic perovskite solar cells——Towards a rational design?[J].   structured  small  molecular hole transporting materials for planar
                 Journal of Materials Chemistry A, 2017, 5(32): 16446-16466.     perovskite solar cells[J]. Journal of  Energy Chemistry, 2018, 32:
            [11]  RODIGUEZÍ-SECO C, CABAU L, VIDAL-FERRAN A,  et al.   85-92.
                 Advances in the synthesis of small  molecules  as hole transport   [29]  WU F, JI Y,  WANG R,  et al. Molecular engineering to enhance
                 materials for  lead halide perovskite solar cells[J]. Accounts of   perovskite solar cell performance: Incorporation of benzothiadiazole
                 Chemical Research, 2018, 51(5): 869-880.          as core unit for low cost hole transport materials[J].  Dyes  and
            [12]  URIETA-MORA J, GARÍA-BENITO I, MOLINAOLINA-ONTORIA   Pigments, 2017, 143: 356-360.
                 A,  et al.  Hole transporting materials  for perovskite solar cells:  A   [30]  WU F, JI Y, ZHONG C, et al. Fluorine-substituted benzothiadiazole-
                 chemical  approach[J]. Chemical Society Reviews, 2018, 47(23):   based hole transport materials for highly efficient planar perovskite
                 8541-8571.                                        solar cells with a FF exceeding 80%[J]. Chemical Communications,
            [13]  SUN X L, ZHAO D B, LI Z A, et al. Recent advances in the design   2017, 53(62): 8719-8722.
                 of dopant-free hole transporting materials for highly efficient perovskite   [31]  ZHOU X,  KONG  F T, SUN  Y,  et al. Benzothiadiazole-based hole
                 solar cells[J]. Chinese Chemical Letters, 2018, 29(2): 219-231.     transport materials  for high-efficiency  dopant-free perovskite solar
            [14]  RAKSTYS K, IGCI C, NAZEERUDDIN M K, et al. Efficiency vs   cells: Molecular planarity effect[J]. Journal of Energy Chemistry,
                 stability: Dopant-free hole transporting materials towards stabilized   2019, 9(44): 115-120.
                 perovskite solar cells[J]. Chemical Science, 2019, 10(28): 6748-6769.     [32]  CRISTINA R S, MARIA M, CRISTINA R C, et al. Benzothiadiazole
            [15]  BI D Q, YI C Y, LUO J S, et al. Polymer-templated nucleation and   aryl-amine based materials as efficient hole carriers  in perovskite
                 crystal growth of perovskite films for solar cells with  efficiency   solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(29):
                 greater than 21%[J]. Nature Energy, 2016, 1(10): 16142.     32712-32718.
            [16]  BURSCHKA J  L, DUALEH A, KESSLER F,  et al.   [33]  JI  Y, HE  B Z,  LU H Q,  et al. Core structure engineering in  hole
                 Tris[2-(1H-pyrazol-1-yl)pyridine]cobalt (Ⅲ) as  p-type dopant for   transport materials to achieve highly-efficient perovskite solar
                 organic semiconductors and its application in highly efficient solid-   cells[J]. ChemSusChem, 2019, 12(7): 1374-1380.
                 state dye-sensitized solar cells[J]. Journal of the American Chemical   [34]  WU F, SHAN Y H, QIAO J H, et al. Replacement of biphenyl by
                 Society, 2011, 133(45): 18042-18045.              bipyridine enabling powerful hole transport materials for efficient
            [17]  BACH U, LUPO  D, COMTE P,  et al. Solid-state dye-sensitized   perovskite solar cells[J]. ChemSusChem, 2017, 10(19): 3833-3838.
                 mesoporous TiO 2 solar cells with high photon-to-electron conversion   [35]  XU B, SHEIBANI E, LIU P,  et al. Carbazole-based hole-transport
                 efficiencies[J]. Nature, 1998, 395(6072): 583-585.     materials for efficient solid-state dye-sensitized solar cells and perovskite
            [18]  LI H R, FU K W, BOIX P P, et al. Hole-transporting small molecules   solar cells[J]. Advanced Materials, 2014, 26(38): 6629-6634.
                 based on thiophene cores for high efficiency perovskite solar cells[J].   [36]  LU H Q, HE B Z, JI Y, et al. Dopant-free hole transport materials
                 ChemSusChem, 2014, 7(12): 3420-3425.              processed with  green solvent for efficient perovskite solar cells[J].
            [19]  MOLINA-ONTORIA A,  ZIMMERMANN I, GARCIA-BENITO I,   Chemical Engineering Journal, 2019, 385: 123976.
                 et al. Benzotrithiophene-based hole-transporting materials for 18. 2%   [37]  YE X X, ZHAO X J, LI Q Y, et al. Effect of the acceptor and alkyl
                 perovskite solar cells[J]. Angewandte Chemie International Edition,   length in  benzotriazole-based donor-acceptor-donor  type hole
                 2016, 55(21): 6270-6274.                          transport materials on the photovoltaic performance of PSCs[J]. Dyes
            [20]  ZHOU W Q, WEN Z H,  GAO P. Less is more: Dopant-free hole   and Pigments, 2019, 164: 407-416.
                 transporting materials for high-efficiency perovskite solar cells[J].   [38]  CHENG H L, ZHAO X J, SHEN Y, et al. Diketopyrrolopyrrole based
                 Advanced Energy Materials, 2015, 8 (9): 1702512.     D-π-A-π-D type small organic molecules as hole transporting
            [21]  CHEN Y H,  LIN L  Y, LU C W,  et al. Vacuum-deposited small-   materials for perovskite solar cells[J]. Journal of Energy Chemistry,
                 molecule organic solar cells with high power conversion efficiencies   2017, 27(4): 1175-1182.
                 by judicious molecular design and device optimization[J]. Journal of   [39]  ZHAO C W, WANG T Y, LI D M,  et al. Synthesis and
                 the American Chemical Society, 2012, 134(33): 13616-13623.     characterization  of triphenylamine modified azobenzene dyes[J].
            [22]  ZHU W H, WU Y Z, WANG S T, et al. Organic D-A-π-A solar cell   Dyes and Pigments, 2017, 137: 256-264.
                 sensitizers with improved stability and spectral response[J].   [40]  WU G H,  ZHANG  Y H, KANEKO R,  et al.  A 2, 1,
   27   28   29   30   31   32   33   34   35   36   37