Page 32 - 《精细化工》2021年第3期
P. 32
·452· 精细化工 FINE CHEMICALS 第 38 卷
[4] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide Advanced Functional Materials, 2011, 21(4): 756-763.
perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal [23] ZHANG H, WU Y Z, ZHANG W W, et al. Low cost and stable
of the American Chemical Society, 2009, 131(17): 6050-6051. quinoxaline-based hole-transporting materials with a D-A-D molecular
[5] ZHANG L Z, ZHOU X Y, LIU C, et al. A review on solution- configuration for efficient perovskite solar cells[J]. Chemical Science,
processable dopant-free small molecules as hole-transporting materials 2018, 9(27): 5919-5928.
for efficient perovskite solar cells[J]. Small Methods, 2020, 4(9): [24] XU P, LIU P, LI Y Y, et al. D-A-D-typed hole transport materials for
2000254. efficient perovskite solar cells: Tuning photovoltaic properties via the
[6] IM J H, LEE C R, LEE J W, et al. 6.5% Efficient perovskite acceptor group[J]. ACS Applied Materials & Interfaces, 2018,
quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088- 10(23): 19697-19703.
4093. [25] WU Y Z, ZHU W H, ZAKEERUDDIN S M, et al. Insight into
[7] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized D-A-π-A structured sensitizers: A promising route to highly efficient
all-solid-state submicron thin film mesoscopic solar cell with and stable dye-sensitized solar cells[J]. ACS Applied Materials &
efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591-597. Interfaces, 2015, 7(18): 9307-9318.
[8] MENG L, YOU J B, GUO T F, et al. Recent advances in the inverted [26] LIU Y H, ZHAO J B, LI Z K, et al. Aggregation and morphology
planar structure of perovskite solar cells[J]. Accounts of Chemical control enables multiple cases of high-efficiency polymer solar
Research, 2016, 49(1): 155-165. cells[J]. Nature Communications, 2014, 5(1): 5293.
[9] ZHANG J (张婧), HE Y J (何有军), MIN J (闵杰). Recent progress [27] ZHOU X, KONG F T, SUN Y, et al. Dopant-free benzothiadiazole
in hybrid perovskite solar cells based on p-type small molecules as bridged hole transport materials for highly stable and efficient
hole transporting materials[J]. Acta Physico-Chimica Sinica (物理化 perovskite solar cells[J]. Dyes and Pigments, 2020, 173:
学学报), 2018, 34(11): 1221-1238. 107954-107960.
[10] KRISHNA A, GRIMSDALE A C. Hole transporting materials for [28] ZHAO X J, QUAN Y Y, PAN H, et al. Novel donor-acceptor-donor
mesoscopic perovskite solar cells——Towards a rational design?[J]. structured small molecular hole transporting materials for planar
Journal of Materials Chemistry A, 2017, 5(32): 16446-16466. perovskite solar cells[J]. Journal of Energy Chemistry, 2018, 32:
[11] RODIGUEZÍ-SECO C, CABAU L, VIDAL-FERRAN A, et al. 85-92.
Advances in the synthesis of small molecules as hole transport [29] WU F, JI Y, WANG R, et al. Molecular engineering to enhance
materials for lead halide perovskite solar cells[J]. Accounts of perovskite solar cell performance: Incorporation of benzothiadiazole
Chemical Research, 2018, 51(5): 869-880. as core unit for low cost hole transport materials[J]. Dyes and
[12] URIETA-MORA J, GARÍA-BENITO I, MOLINAOLINA-ONTORIA Pigments, 2017, 143: 356-360.
A, et al. Hole transporting materials for perovskite solar cells: A [30] WU F, JI Y, ZHONG C, et al. Fluorine-substituted benzothiadiazole-
chemical approach[J]. Chemical Society Reviews, 2018, 47(23): based hole transport materials for highly efficient planar perovskite
8541-8571. solar cells with a FF exceeding 80%[J]. Chemical Communications,
[13] SUN X L, ZHAO D B, LI Z A, et al. Recent advances in the design 2017, 53(62): 8719-8722.
of dopant-free hole transporting materials for highly efficient perovskite [31] ZHOU X, KONG F T, SUN Y, et al. Benzothiadiazole-based hole
solar cells[J]. Chinese Chemical Letters, 2018, 29(2): 219-231. transport materials for high-efficiency dopant-free perovskite solar
[14] RAKSTYS K, IGCI C, NAZEERUDDIN M K, et al. Efficiency vs cells: Molecular planarity effect[J]. Journal of Energy Chemistry,
stability: Dopant-free hole transporting materials towards stabilized 2019, 9(44): 115-120.
perovskite solar cells[J]. Chemical Science, 2019, 10(28): 6748-6769. [32] CRISTINA R S, MARIA M, CRISTINA R C, et al. Benzothiadiazole
[15] BI D Q, YI C Y, LUO J S, et al. Polymer-templated nucleation and aryl-amine based materials as efficient hole carriers in perovskite
crystal growth of perovskite films for solar cells with efficiency solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(29):
greater than 21%[J]. Nature Energy, 2016, 1(10): 16142. 32712-32718.
[16] BURSCHKA J L, DUALEH A, KESSLER F, et al. [33] JI Y, HE B Z, LU H Q, et al. Core structure engineering in hole
Tris[2-(1H-pyrazol-1-yl)pyridine]cobalt (Ⅲ) as p-type dopant for transport materials to achieve highly-efficient perovskite solar
organic semiconductors and its application in highly efficient solid- cells[J]. ChemSusChem, 2019, 12(7): 1374-1380.
state dye-sensitized solar cells[J]. Journal of the American Chemical [34] WU F, SHAN Y H, QIAO J H, et al. Replacement of biphenyl by
Society, 2011, 133(45): 18042-18045. bipyridine enabling powerful hole transport materials for efficient
[17] BACH U, LUPO D, COMTE P, et al. Solid-state dye-sensitized perovskite solar cells[J]. ChemSusChem, 2017, 10(19): 3833-3838.
mesoporous TiO 2 solar cells with high photon-to-electron conversion [35] XU B, SHEIBANI E, LIU P, et al. Carbazole-based hole-transport
efficiencies[J]. Nature, 1998, 395(6072): 583-585. materials for efficient solid-state dye-sensitized solar cells and perovskite
[18] LI H R, FU K W, BOIX P P, et al. Hole-transporting small molecules solar cells[J]. Advanced Materials, 2014, 26(38): 6629-6634.
based on thiophene cores for high efficiency perovskite solar cells[J]. [36] LU H Q, HE B Z, JI Y, et al. Dopant-free hole transport materials
ChemSusChem, 2014, 7(12): 3420-3425. processed with green solvent for efficient perovskite solar cells[J].
[19] MOLINA-ONTORIA A, ZIMMERMANN I, GARCIA-BENITO I, Chemical Engineering Journal, 2019, 385: 123976.
et al. Benzotrithiophene-based hole-transporting materials for 18. 2% [37] YE X X, ZHAO X J, LI Q Y, et al. Effect of the acceptor and alkyl
perovskite solar cells[J]. Angewandte Chemie International Edition, length in benzotriazole-based donor-acceptor-donor type hole
2016, 55(21): 6270-6274. transport materials on the photovoltaic performance of PSCs[J]. Dyes
[20] ZHOU W Q, WEN Z H, GAO P. Less is more: Dopant-free hole and Pigments, 2019, 164: 407-416.
transporting materials for high-efficiency perovskite solar cells[J]. [38] CHENG H L, ZHAO X J, SHEN Y, et al. Diketopyrrolopyrrole based
Advanced Energy Materials, 2015, 8 (9): 1702512. D-π-A-π-D type small organic molecules as hole transporting
[21] CHEN Y H, LIN L Y, LU C W, et al. Vacuum-deposited small- materials for perovskite solar cells[J]. Journal of Energy Chemistry,
molecule organic solar cells with high power conversion efficiencies 2017, 27(4): 1175-1182.
by judicious molecular design and device optimization[J]. Journal of [39] ZHAO C W, WANG T Y, LI D M, et al. Synthesis and
the American Chemical Society, 2012, 134(33): 13616-13623. characterization of triphenylamine modified azobenzene dyes[J].
[22] ZHU W H, WU Y Z, WANG S T, et al. Organic D-A-π-A solar cell Dyes and Pigments, 2017, 137: 256-264.
sensitizers with improved stability and spectral response[J]. [40] WU G H, ZHANG Y H, KANEKO R, et al. A 2, 1,