Page 33 - 《精细化工》2021年第3期
P. 33
第 3 期 刘小雷,等: 钙钛矿太阳能电池中 D-A-D 型空穴传输材料的研究进展 ·453·
3-benzooxadiazole moiety in a D-A-D-type hole-transporting 7082.
material for boosting the photovoltage in perovskite solar cells[J]. [48] ZHU L N, XU J, SHAN Y H, et al. Diaryl ketone-based
Journal of Physical Chemistry C, 2017, 121(33): 17617-17624. hole-transporting materials for efficient perovskite solar cells[J].
[41] CHEN C S, HSU Y T, WANG B C, et al. Thienoisoindigo-based Journal of Materials Chemistry C, 2019, 7(11): 3226-3230.
dopant-free hole transporting material for efficient p-i-n perovskite [49] PHAM H D, JAIN S, LI M, et al. All-rounder low-cost dopant-free
solar cells with the grain size in micrometer scale[J]. Journal of D-A-D hole-transporting materials for efficient indoor and outdoor
Physical Chemistry C, 2019, 123(3): 1602-1609. performance of perovskite solar cells[J]. Advanced Electronic
[42] GOVINDASAMY S, RAHUL R, SUDHI R, et al. Dicyanovinylene Materials, 2020, 6(4): 190084.
and thiazolo[5, 4-d]thiazole core containing D-A-D type hole- [50] ZHANG D Y, XU P, WU T, et al. Cyclopenta[hi]aceanthrylene-based
transporting materials for spiro-OMeTAD-free perovskite solar cell dopant-free hole-transport material for organic-inorganic hybrid and
applications with superior atmospheric stability[J]. ACS Applied all-inorganic perovskite solar cells[J]. Journal of Materials Chemistry
Energy Materials, 2019, 2(10): 7609-7618. A, 2019, 7(10): 5221-5226.
[43] SONAR P M, PHAM H D, KAZUMASA H K, et al. One step facile [51] PHAM H D, DO T T, KIM J Y, et al. Molecular engineering using an
synthesis of novel anthanthrone dye based, dopant-free hole anthanthrone dye for low-cost hole transport materials: A strategy for
transporting material for efficient and stable perovskite solar cells[J]. dopant-free, high-efficiency, and stable perovskite solar cells[J].
Journal of Materials Chemistry C, 2018, 6(14): 3699-3708. Advanced Energy Materials, 2018, 8(16): 1703007.
[44] WANG C G, ZHANG Z L, WANG Y, et al. Quinacridone-based [52] DING X D, CHEN C, ZHENG M M, et al. Highly efficient
π-conjugated electronic materials[J]. Journal of Materials Chemistry phenothiazine 5, 5-dioxide-based hole transport materials for planar
C, 2016, 4(42): 9918-9936. perovskite solar cells with a PCE exceeding 20%[J]. Journal of
[45] QU Y, JIN Y H, CHENG Y X, et al. A solothiocarbonyl quinacridone Materials Chemistry A, 2019, 7(16): 9510-9516.
2+
with long chains used as a fluorescent tool for rapid detection of Hg [53] GRISORIO R, ROOSE B, COLELLA S, et al. Molecular tailoring of
in hydrophobic naphtha samples[J]. Journal of Materials Chemistry phenothiazine-based hole-transporting materials for high-performing
A, 2017, 5(28): 14537-14541. perovskite solar cells[J]. ACS Energy Letters, 2017, 2(5): 1029-1034.
[46] PRASHANT M S, PHAM H D, JAIN S, et al. Dopant-free novel [54] WANG Y, CHEN W, WANG L, et al. Dopant-free small-molecule
hole-transporting materials based on quinacridone dye for hole-transporting material for inverted perovskite solar cells with
high-performance and humidity-stable mesoporous perovskite solar efficiency exceeding 21%[J]. Advanced Materials, 2019, 31(35):
cells[J]. Journal of Materials Chemistry A, 2019, 7(10): 5315-5323. 1902781.
[47] ABATES Y, LIN Y D, CHUNG H C, et al. Donor-acceptor-donor [55] WANG M H (王梦涵), WAN L (万里), GAO X Y (高旭宇), et al.
type cyclopenta[2, 1-b;3, 4-b']dithiophene derivatives as a new class Synthesis of D-π-A-π-D type dopant-free hole transporting materials
of hole transporting materials for highly efficient and stable perovskite and application in inverted perovskite solar cells[J]. Acta Chimica
solar cells[J]. ACS Applied Energy Materials, 2019, 2(10): 7070- Sinica (化学学报), 2019, 77(8): 741-750.
(上接第 438 页) prepared from resorcinol/formaldehyde polymer[J]. Journal of
[38] PREMAKSHI P, RAMESH K, KARIDURAGANAVAR M. Membrane Science, 2011, 379: 52-59.
Modification of crosslinked chitosan membrane using NaY zeolite [47] MARCEL T H, MIEKE W T, CINDY H , et al. Influence of the
for pervaporation separation of water isopropanol mixtures[J]. intermediate layer on the hydrothermal stability of sol-gel derived
Chemical Engineering Research and Design, 2015, 94: 32-43. hybrid silica membranes[J]. Journal of the European Ceramic
[39] PAL P, NAYAK J. Acetic acid production and purification: Critical Society, 2017, 37: 3435-3441.
review towards process intensification[J]. Separation and Purification [48] WASEEM R, YANG J H, WANG J X, et al. HCl modification and
Technology, 2017, 46: 44-61. pervaporation performance of BTESE membrane for the dehydration
[40] HASEGAWA Y, NAGASE T, KIYOZUMI Y, et al. Influene of acid of acetic acid/water mixture[J]. Separation and Purification
on the permeation properties of NaA-type zeolite membranes[J]. Technology, 2020, 235: 116102.
Journal of Membrane Science, 2010, 349: 189-194. [49] NAGASAWA H, ODAGAWA S, KANEZASHI M, et al. Acid
[41] CUI Y, KITA H. Zeolite T membrane: Preparation, characterization, post-treatment of sol-gel derived ethylene-bridged organosilica
pervaporation of water/organic liquid mixtures and acid stability[J]. membranes and their filtration performances[J]. Journal of
Journal of Membrane Science, 2004, 23: 17-27. Membrane Science, 2018, 556: 196-202.
[42] CHEN Z, YIN D H, LI Y H, et al. Functional defectpatching of a [50] YANG Z J, ZHANG W, WANG T, et al. Improved thiophene
2+
2+
2+
zeolite membrane for the dehydration of acetic acid by solution selectivity by Cu , Pb and Mn ions in pervaporative
pervaporation[J]. Journal of Membrane Science, 2011, 369: 506-513. poly[bis(p-methyl phenyl) phosphazene] desulfurization membrane[J].
[43] MASUDA T, OTANI S, TSUJI T, et al. Preparation of hydrophilic Journal of Membrane Science, 2014, 454: 463-469.
and acid-proof silicalite-1 zeolite membrane and its application to [51] LI B, LIU W P, WU H, et al. Desulfurization of model gasoline by
selective separation of water from water solutions of concentrated bioinspired oleophilic nanocomposite membranes[J]. Journal of
acetic acid by pervaporation[J]. Separation and Purification Membrane Science, 2012, 415: 278-287.
Technology, 2003, 32: 181-189. [52] SUZANA P, NUNES A, ZEYNEP C, et al. Thinking the future of
[44] NAGASE T, KIYOZUMI Y, HASEGAWA Y, et al. Dehydration of membranes: Perspectives for advanced and new membrane materials
concentrated acetic acid solutions by pervaporation using novel MER and manufacturing processes[J]. Journal of Membrane Science, 2020,
zeolite membranes[J]. Chemical Physics Letters, 2007, 36: 594-595. 598: 117761.
[45] HASEGAWA Y, HOTTA H, SATO K, et al. Preparation of novel [53] LI C Y, MECKLER S M, SMITH Z P, et al. Engineered transport in
chabazite (CHA)-type zeolite layer on porous α-Al 2O 3 tube using microporous materials and membranes for clean energy
template free solution[J]. Journal of Membrane Science, 2010, 347: technologies[J]. Advanced Materials, 2018, 30: 1704953.
193-196. [54] KIM S, WANG H T, LEE Y M. 2D nanosheets and their composite
[46] TANAKA S, YASUDA T, KATAYAMA Y, et al. Pervaporation membranes for water, gas, and ion separation[J]. Angewandte
dehydration performance of microporous carbon membranes Chemie International Edition, 2019, 58: 2-18.