Page 168 - 《精细化工》2021年第5期
P. 168
·1022· 精细化工 FINE CHEMICALS 第 38 卷
nanowire arrays for hydrogen evolution[J]. ACS Catalysis, 2017, evolution of CoS 2 octahedrons for application in supercapacitors[J].
7(11): 7405-7411. Electrochimica Acta, 2014, 136: 550-556.
[15] GUO Y X, GAN L F, SHANG C S, et al. A cake-style [22] OUYANG C B, WANG X, WANG S Y. Phosphorus-doped CoS 2
CoS 2@MoS 2/RGO hybrid catalyst for efficient hydrogen evolution[J]. nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen
Advanced Functional Materials, 2017, 27(5):1602699. evolution reaction[J]. Chemical Communications, 2015, 51(75):
[16] OUYANG C B, FENG S, HUO J, et al. Three-dimensional 14160-14163.
hierarchical MoS 2/CoS 2 heterostructure arrays for highly efficient [23] ZOU K Y, LIU Y C, JIANG Y F, et al. Benzoate acid-dependent
electrocatalytic hydrogen evolution[J]. Green Energy & Environment, lattice dimension of Co-MOFs and MOF-derive CoS 2@CNTs with
2017, 2(2): 134-141. tunable pore diameters for supercapacitors[J]. Inorganic Chemistry,
[17] TAO T X (陶庭先), XU J B (胥佳斌), CHU W (褚伟). Synthesis and 2017, 56(11): 6184-6196.
photocatalytic properties of nano-Bi 2MoO 6/amidoxime fiber [24] LI H J, CHEN X J, TAO T X, et al. Fiber-supported Pd catalysts for
composites [J]. Fine Chemicals(精细化工), 2016, 33(3): 320-325. cross-coupling reaction of aromatic and aliphatic terminal alkynes[J].
[18] TAO T X (陶庭先), WU Z C (吴之传), ZHAO Z Q (赵择卿). Catalysis Letters, 2019, 149(9): 2390-2396.
Preparation of chelating fabers: Modification of polyacrylonitrile [25] VOORHEES P W. The theory of Ostwald ripening[J]. Journal of
fiber[J]. Synthetic Fiber in China (合成纤维), 2001, 30(4): 32-33. Statistical Physics, 1985, 38(1):231-252.
[19] WEI C, RAO R R, PENG J Y, et al. Recommended practices and [26] ZHU J, HU L S, ZHAO P X, et al. Recent advances in
benchmark activity for hydrogen and oxygen electrocatalysis in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical
water splitting and fuel cells[J]. Advanced Materials, 2019, 31(31): Reviews , 2020, 120(2): 851-918.
1806296. [27] LIAO L, WANG S N, XIAO J J, et al. A nanoporous molybdenum
[20] FABER M S, DZIEDZIC R, LUKOWSKI M A, et al. carbide nanowire as an electrocatalyst for hydrogen evolution
High-performance electrocatalysis using metallic cobalt pyrite reaction[J]. Energy & Environmental Science, 2014, 7(1): 387-392.
(CoS 2) micro- and nanostructures[J]. Journal of the American [28] YAN X D, TIAN L H, CHEN X B. Crystalline/amorphous Ni/NiO
Chemical Society, 2014, 136(28): 10053-10061. core/shell nanosheets as highly active electrocatalysts for hydrogen
[21] XING J C, ZHU Y L, ZHOU Q W, et al. Fabrication and shape evolution reaction[J]. Journal of Power Sources, 2015, 300: 336-343.
(上接第 1008 页) 2012, 360: 61-70.
[25] WANG Y Y, GONG X X, WANG Z Z, et al. SO 3H-functionalized
[19] CAI Y Q, YU G Q, LIU C D, et al. Imidazolium ionic liquid-
ionic liquids as efficient and recyclable catalysts for the synthesis of
supported sulfonic acids: Efficient and recyclable catalysts for
pentaerythritol diacetals and diketals[J]. Journal of Molecular
esterification of benzoic acid[J]. Chinese Chemical Letters, 2012,
Catalysis A: Chemical, 2010, 322(1/2): 7-16.
23(1): 1-4.
[26] ZHAO S S (赵森树), FU S H (符圣和), ZHENG K C (郑康城),
[20] SHI N (史娜), HUANG B H (黄宝华), WANG Y F (汪艳飞), et al.
et al. Catalytic esterification reaction of α-pinene with acetic acid to
Esterification catalyzed by ionic liquids of imidazolium hydrogen
prepare bornyl ester directly with high selectively-the primary
sulfate[J]. Chemical Reagents (化学试剂), 2009, 31(6): 423-426.
investigation of catalysts and reaction mechanism[J]. Journal of
[21] GUI J Z, CONG X H, LIU D, et al. Novel bronsted acidic ionic
Molecular Catalysis (分子催化), 1994, 8(1): 50-57.
liquid as efficient and reusable catalyst system for esterification[J].
[27] MA B (马滨), YUAN B (袁冰). Hydration/isomerization of α-pinene
Catalysis Communications, 2004, 5(9): 473-477.
catalyzed by carboxyl functionalized ionic liquids[J]. Journal of
[22] WU Q, WANG M, HAO Y, et al. Synthesis of polyoxymethylene
dimethyl ethers catalyzed by bronsted acid ionic liquids with Qingdao University of Science and Technology(Natural Science
Edition) (青岛科技大学学报: 自然科学版), 2017, 38(Z1): 25-29, 34.
alkanesulfonic acid groups[J]. Industrial & Engineering Chemistry
Research, 2014, 53(42): 16254-16260. [28] LIU S W, YU S T, LIU F S, et al. Reactions of α-pinene using acidic
[23] LIU H (刘欢), LYU H H (吕欢欢), ZHAO T T (赵婷婷), et al. ionic liquids as catalysts[J]. Journal of Molecular Catalysis A:
Preparation of sulfonic ionic liquids and investigation on catalytic Chemical, 2008, 279(2): 177-181.
alcoholysis of carbohydrates to ethyl levulinate[J]. Transactions of [29] LIU S W, SONG Y J, YU S T, et al. Synthesis of terpinyl acetate
the Chinese Society for Agricultural Machinery (农业机械学报), catalyzed by acidic functional polyether ionic liquid[J]. Industrial
2018, 49(11): 289-297. Catalysis, 2008, 16(10): 157-160.
[24] KORE R, KUMAR T J D, SRIVASTAVA R, et al. Hydration of [30] YANG Z W(杨正文). Study on synthesis of borneol from α-pinene
alkynes using bronsted acidic ionic liquids in the absence of nobel catalyzed by functionalized acidic ionic liquid[D]. Kunming:
metal catalyst/H 2SO 4[J]. Journal of Molecular Catalysis A: Chemical, Kunming University of Science and Technology (昆明理工大学), 2015.