Page 168 - 《精细化工》2021年第5期
P. 168

·1022·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 nanowire arrays for hydrogen evolution[J]. ACS  Catalysis, 2017,   evolution of CoS 2 octahedrons for application in supercapacitors[J].
                 7(11): 7405-7411.                                 Electrochimica Acta, 2014, 136: 550-556.
            [15]  GUO  Y X, GAN L F, SHANG C S,  et al. A cake-style   [22]  OUYANG C B, WANG X, WANG S  Y. Phosphorus-doped CoS 2
                 CoS 2@MoS 2/RGO hybrid catalyst for efficient hydrogen evolution[J].   nanosheet arrays  as ultra-efficient electrocatalysts for the hydrogen
                 Advanced Functional Materials, 2017, 27(5):1602699.   evolution reaction[J]. Chemical Communications, 2015, 51(75):
            [16]  OUYANG  C B,  FENG S, HUO J,  et al. Three-dimensional   14160-14163.
                 hierarchical MoS 2/CoS 2 heterostructure  arrays for highly efficient   [23]  ZOU K Y, LIU Y C,  JIANG Y  F,  et al. Benzoate acid-dependent
                 electrocatalytic hydrogen evolution[J]. Green Energy & Environment,   lattice dimension of Co-MOFs and MOF-derive CoS 2@CNTs with
                 2017, 2(2): 134-141.                              tunable pore diameters for supercapacitors[J]. Inorganic Chemistry,
            [17]  TAO T X (陶庭先), XU J B (胥佳斌), CHU W (褚伟). Synthesis and   2017, 56(11): 6184-6196.
                 photocatalytic properties of nano-Bi 2MoO 6/amidoxime fiber   [24]  LI H J, CHEN X J, TAO T X, et al. Fiber-supported Pd catalysts for
                 composites [J]. Fine Chemicals(精细化工), 2016, 33(3): 320-325.   cross-coupling reaction of aromatic and aliphatic terminal alkynes[J].
            [18]  TAO T  X (陶庭先), WU Z C (吴之传), ZHAO Z  Q (赵择卿).   Catalysis Letters, 2019, 149(9): 2390-2396.
                 Preparation of chelating  fabers: Modification of  polyacrylonitrile   [25]  VOORHEES P W. The theory of Ostwald ripening[J]. Journal of
                 fiber[J]. Synthetic Fiber in China (合成纤维), 2001, 30(4): 32-33.   Statistical Physics, 1985, 38(1):231-252.
            [19]  WEI C, RAO  R R, PENG J Y,  et al.  Recommended practices and   [26]  ZHU J, HU  L  S, ZHAO P X,  et al. Recent advances in
                 benchmark activity for  hydrogen and oxygen electrocatalysis in   electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical
                 water splitting and fuel cells[J]. Advanced Materials, 2019, 31(31):   Reviews , 2020, 120(2): 851-918.
                 1806296.                                      [27]  LIAO L, WANG S N, XIAO J J, et al. A nanoporous molybdenum
            [20]  FABER M S,  DZIEDZIC R, LUKOWSKI M  A,  et al.   carbide nanowire as an electrocatalyst for hydrogen evolution
                 High-performance electrocatalysis using metallic cobalt pyrite   reaction[J]. Energy & Environmental Science, 2014, 7(1): 387-392.
                 (CoS 2) micro- and nanostructures[J]. Journal of the  American   [28]  YAN X D, TIAN L H, CHEN X B. Crystalline/amorphous Ni/NiO
                 Chemical Society, 2014, 136(28): 10053-10061.     core/shell nanosheets as highly active electrocatalysts for hydrogen
            [21]  XING  J C, ZHU Y L, ZHOU  Q W,  et al. Fabrication and shape   evolution reaction[J]. Journal of Power Sources, 2015, 300: 336-343.


            (上接第 1008 页)                                           2012, 360: 61-70.

                                                               [25]  WANG Y Y, GONG X X, WANG Z Z, et al. SO 3H-functionalized
            [19]  CAI Y Q, YU  G  Q, LIU C  D,  et al. Imidazolium ionic liquid-
                                                                   ionic liquids as efficient and recyclable catalysts for the synthesis of
                 supported sulfonic acids: Efficient  and recyclable  catalysts for
                                                                   pentaerythritol diacetals  and diketals[J]. Journal of Molecular
                 esterification of benzoic acid[J].  Chinese  Chemical Letters, 2012,
                                                                   Catalysis A: Chemical, 2010, 322(1/2): 7-16.
                 23(1): 1-4.
                                                               [26]  ZHAO S S (赵森树), FU S H (符圣和), ZHENG K  C (郑康城),
            [20]  SHI N (史娜), HUANG B H (黄宝华), WANG Y F (汪艳飞), et al.
                                                                   et al. Catalytic esterification reaction of α-pinene with acetic acid to
                 Esterification catalyzed by ionic liquids of imidazolium hydrogen
                                                                   prepare bornyl ester directly with  high  selectively-the primary
                 sulfate[J]. Chemical Reagents (化学试剂), 2009, 31(6): 423-426.
                                                                   investigation of catalysts and reaction mechanism[J]. Journal of
            [21]  GUI J Z, CONG  X H, LIU D,  et al. Novel bronsted acidic ionic
                                                                   Molecular Catalysis (分子催化), 1994, 8(1): 50-57.
                 liquid as efficient and reusable catalyst system for esterification[J].
                                                               [27]  MA B (马滨), YUAN B (袁冰). Hydration/isomerization of α-pinene
                 Catalysis Communications, 2004, 5(9): 473-477.
                                                                   catalyzed by carboxyl functionalized ionic liquids[J]. Journal of
            [22]  WU Q,  WANG M, HAO  Y,  et al. Synthesis of polyoxymethylene
                 dimethyl ethers catalyzed by bronsted acid ionic liquids with   Qingdao University of Science  and Technology(Natural Science
                                                                   Edition) (青岛科技大学学报:  自然科学版), 2017, 38(Z1): 25-29, 34.
                 alkanesulfonic acid groups[J]. Industrial & Engineering  Chemistry
                 Research, 2014, 53(42): 16254-16260.          [28]  LIU S W, YU S T, LIU F S, et al. Reactions of α-pinene using acidic
            [23]  LIU H (刘欢), LYU H H (吕欢欢), ZHAO T T (赵婷婷),  et al.   ionic liquids as catalysts[J]. Journal of Molecular Catalysis A:
                 Preparation of sulfonic ionic liquids  and investigation on catalytic   Chemical, 2008, 279(2): 177-181.
                 alcoholysis of carbohydrates to ethyl levulinate[J]. Transactions of   [29]  LIU S W, SONG Y J, YU S T, et al. Synthesis of terpinyl acetate
                 the Chinese Society for Agricultural Machinery (农业机械学报),   catalyzed by  acidic functional polyether ionic liquid[J].  Industrial
                 2018, 49(11): 289-297.                            Catalysis, 2008, 16(10): 157-160.
            [24]  KORE R, KUMAR T J  D, SRIVASTAVA  R,  et al. Hydration of   [30] YANG Z W(杨正文). Study on synthesis of borneol from α-pinene
                 alkynes using bronsted acidic ionic liquids in the absence of nobel   catalyzed by functionalized acidic ionic liquid[D]. Kunming:
                 metal catalyst/H 2SO 4[J]. Journal of Molecular Catalysis A: Chemical,   Kunming University of Science and Technology (昆明理工大学), 2015.
   163   164   165   166   167   168   169   170   171   172   173