Page 183 - 《精细化工》2021年第5期
P. 183

第 5 期            杨   莉,等:  花簇状 g-C 3 N 4 /Bi 2 MoO 6 微球的制备及其光催化降解模拟染料废水                 ·1037·


                 directing and morphology-controlling agent for the syntheses  of   carbon composite photocatalyst in the degradation  of tetracycline
                 heterostructured graphene-Bi 2MoO 6/Bi 3.64Mo 0.36O 6.55 composites   hydrochloride and response surface optimization[J].  Journal of
                 with high photocatalytic activity[J]. Applied Catalysis B:   Beijing University of Chemical  Technology (Natural Science
                 Environmental, 2014, 156/157: 447-455.            Edition) (北京化工大学学报:  自然科学版), 2020, 47(2): 24-30.
            [9]   KHAN Z R, SHKIR M, ALSHAHRANI T, et al. Facile microwave   [21]  BAI B ( 白波 ), CHEN L ( 陈兰 ), DANG Y ( 党昱 ),  et al.
                 synthesis of bismuth molybdate nanostructures  and their   Yeast-assisted synthesis  of CuO  hollow microspheres  and their
                 characterization for optoelectronic applications[J]. Solid State   catalytic performance[J]. Chemical Research and Application (化学
                 Sciences, 2020, 107: 106361.                      研究与应用), 2012, 24(10): 1484-1490.
            [10]  ZHANG M Y, SHAO C L, ZHANG P, et al. Bi 2MoO 6 microtubes:   [22]  ZHAO  Z Y, CHEN H M, WANG  N,  et al. Hydrogen storage
                 Controlled fabrication by using electrospun polyacrylonitrile   property of porous/hollow TiO 2  using yeast as template[J]. Rare
                 microfibers as template and their enhanced visible light photocatalytic   Metal Materials and Engineering, 2013, 42(12): 2467-2471.
                 activity[J]. Journal of Hazardous Materials, 2012, 225/226: 155-163.     [23]  MA J W, FAN H  Q, ZHAO  N,  et al. Synthesis of In 2O 3 hollow
            [11]  ZHOU Y G, ZHANG Y F, LIN M S,  et al. Monolayered Bi 2WO 6   microspheres for chlorine gas sensing using yeast as bio-template[J].
                 nanosheets mimicking heterojunction interface with open surfaces for   Ceramics International, 2019, 45(7): 9225-9230.
                 photocatalysis[J]. Nature Communications, 2015, 6(1): 8340.     [24]  YIN X F, LI X N, GU W, et al. Enhanced photocatalytic activities in
            [12]  YAN T, SUN M, LIU H  Y,  et al.  Fabrication of hierarchical   g-C 3N 4  via hybridization with Bi-Fe-Nb-containing ferroelectric
                 BiOI/Bi 2MoO 6 heterojunction for degradation of bisphenol A and dye   pyrochlore[J]. ACS Applied Materials & Interfaces, 2017, 9(23):
                 under visible light irradiation[J]. Journal of Alloys & Compounds,   19908-19916.
                 2015, 634(1): 223-231.                        [25]  XIE Y Y, SHANG X T, LIU D, et al. Non-noble metal thickness-
            [13]  STELO F, KUBLIK N, ULLAH S,  et al. Recent advances in   tunable Bi 2MoO 6 nanosheets for highly efficient visible-light-driven
                 Bi 2MoO 6 based  Z-scheme heterojunctions  for photocatalytic   nitrobenzene reduction  into aniline[J]. Applied Catalysis B:
                 degradation  of  pollutants[J]. Journal  of Alloys and Compounds,   Environmental, 2019, 259: 118087.
                 2020, 829: 154591.                            [26]  FANG X C, YAO M D, GUO L Y, et al. One-step, solventless and
            [14]  KUMAR  R, SUDHAIK A,  RAIZADA P,  et al. An overview on   scalable mechanosynthesis of WO 3·2H 2O ultrathin narrow nanosheets
                 bismuth molybdate based photocatalytic systems:  Controlled   with superior UV-visible-light-driven photocatalytic activity[J]. ACS
                 morphology and enhancement strategies for photocatalytic water   Sustainable Chemistry & Engineering, 2017, 5(11): 10735-10743.
                 purification[J]. Journal of Environmental Chemical Engineering,   [27]  LI Q Q, ZHAO W L,  ZHAI  Z C,  et al. 2D/2D Bi 2MoO 6/g-C 3N 4
                 2020, 8(5): 104291.                               S-scheme heterojunction  photocatalyst with enhanced visible- light
            [15]  ZHOU J (周进), DING  L (丁玲), ZHANG T (张婷),  et al.   activity by Au loading[J]. Journal of Materials Science &
                 Preparation and properties of g-C 3N 4/CQDs photocatalytic   Technology, 2020, 56: 216-226.
                 materials[J]. Fine Chemicals (精细化工), 2020, 37(4): 702-709.     [28]  MA T J, WU J, MI Y D, et al. Novel Z-Scheme g-C 3N 4/C@Bi 2MoO 6
            [16]  MALIK R K, TOMER V. State-of-the-art review of morphological   composite with enhanced visible-light photocatalytic  activity for
                 advancements in graphitic carbon  nitride (g-CN) for sustainable   β-naphthol degradation[J]. Separation & Purification Technology,
                 hydrogen  production[J]. Renewable and Sustainable Energy   2017, 183: 54-65.
                 Reviews, 2021, 135: 110235.                   [29]  LIU W Q (刘维桥). Practical methods in the study of solid
            [17]  LV J L, DAI K, ZHANG J F,  et al. Facile synthesis  of  Z-scheme   catalyst[M]. Beijing: China Petrochemical Press (中国石化出版社),
                 graphitic-C 3N 4/Bi 2MoO 6 nanocomposite for enhanced visible   2000: 9-17.
                 photocatalytic properties[J]. Applied  Surface Science, 2015, 358:   [30]  XIAO K, HUANG H W, TIAN N, et al. Mixed-calcination synthesis
                 377-384.                                          of Bi 2MoO 6/g-C 3N 4 heterojunction  with enhanced visible-light-
            [18]  SELVAKUMAR  R, NAGARAJAN S, PALANISAMI T,  et al.   responsive photoreactivity for RhB degradation and  photocurrent
                 Recent advances in the synthesis of inorganic nano/microstructures   generation[J]. Materials Research Bulletin, 2016, 83: 172-178.
                 using microbial biotemplates and their applications[J]. RSC Advances,   [31]  YIN J (尹健). The controllable synthesis and study on photocatalytic
                 2014, 4: 52156-52169.                             properties of nanoscale bismuth sulphide and compound materials[D].
            [19]  YANG L (杨莉), GOU H G (苟海刚), LI X (李旭), et al. Synthesis   Hefei: Anhui University (安徽大学), 2018.
                 and catalytic performance of biotemplated iron molybdate hollow   [32]  WANG Y M, CAI H Y, QIAN F F, et al. Facile one-step synthesis of
                 microspheres[J]. Materials Reports (材料导报), 2016, 30(14): 39-43.     onion-like carbon  modified ultrathin  g-C 3N 4 2D  nanosheets with
            [20]  LIU M (刘铭), ZHANG  L (张黎), ZHA  R Y (查柔艳),  et al.   enhanced visible-light photocatalytic performance[J]. Journal of
                 Adsorption-photocatalysis coupling effect with a nano-TiO 2@yeast   Colloid and Interface Science, 2019, 533: 47-58.


            (上接第 1001 页)                                           展), 2018, 37(4): 1257-1266.
            [22]  MIZUSAWA K, IMAI Y, YUASA, K, et al. Process for producing   [27]  LIU Y W (刘宇文). Study on ellagic  acid preparation[D]. Beijing:
                 ellagic acid: EP0390107B1[P]. 1995-02-08.         Beijing University of Chemical Technology (北京化工大学), 2015.
            [23]  WANG L, LIAN B L, WU W W, et al. Optimization of ellagic acid   [28]  LEI Y (雷炎). Study of producing ellagic acid from gallic tannin and
                 purification from pomegranate husk by antisolvent recrystallization[J].   purification of ellagic acid[D]. Beijing: Beijing University of Chemical
                 Chemical Engineering & Technology, 2018, 41(6): 1188-1198.     Technology (北京化工大学), 2007.
            [24]  OU R W, WEI J, ZHAO C, et al. Monovalent cation-phenolic crystals   [29]  SHEN Y C, YUAN W H, HSU W H, et al. Color selection in the
                 with pH-driven reversible crystal transformation[J]. Chemistry-A   consideration of color harmony for interior design[J]. Color Research
                 European Journal, 2019, 25(53): 12281-12287.      & Application, 2015, 25(1): 20-31.
            [25]  HE L (何磊), SU Y (苏毅), JIE T (揭涛), et al. Structural design and   [30]  ZHANG  T Q (张天庆), DU J J (杜健军), CHEN P (陈鹏),  et al.
                 performance analysis of gas-liquid ejector[J]. Chemical Industry and   Synthesis and application of 1, 4-diamino-2, 3-phthalimide-anthraquinone
                 Engineering Progress (化工进展), 2020, 39(4): 1245-1251.     dyes[J]. Fine Chemicals (精细化工), 2019, 36(9): 1949-1955.
            [26]  CHEN A Q (陈阿强), HUANG Q S (黄青山), GENG S J (耿淑君),   [31]  XIA Z  Y, SINGH  A, KIRATITANAVIT W,  et al. Unraveling the
                 et al. Hydrodynamic characteristics of gas-liquid two phase flow in   mechanism of thermal and thermo-oxidative degradation of tannic
                 jet reactors[J]. Chemical Industry and Engineering Progress (化工进  acid[J]. Thermochimica Acta, 2015, 605: 77-85.
   178   179   180   181   182   183   184   185   186   187   188