Page 183 - 《精细化工》2021年第5期
P. 183
第 5 期 杨 莉,等: 花簇状 g-C 3 N 4 /Bi 2 MoO 6 微球的制备及其光催化降解模拟染料废水 ·1037·
directing and morphology-controlling agent for the syntheses of carbon composite photocatalyst in the degradation of tetracycline
heterostructured graphene-Bi 2MoO 6/Bi 3.64Mo 0.36O 6.55 composites hydrochloride and response surface optimization[J]. Journal of
with high photocatalytic activity[J]. Applied Catalysis B: Beijing University of Chemical Technology (Natural Science
Environmental, 2014, 156/157: 447-455. Edition) (北京化工大学学报: 自然科学版), 2020, 47(2): 24-30.
[9] KHAN Z R, SHKIR M, ALSHAHRANI T, et al. Facile microwave [21] BAI B ( 白波 ), CHEN L ( 陈兰 ), DANG Y ( 党昱 ), et al.
synthesis of bismuth molybdate nanostructures and their Yeast-assisted synthesis of CuO hollow microspheres and their
characterization for optoelectronic applications[J]. Solid State catalytic performance[J]. Chemical Research and Application (化学
Sciences, 2020, 107: 106361. 研究与应用), 2012, 24(10): 1484-1490.
[10] ZHANG M Y, SHAO C L, ZHANG P, et al. Bi 2MoO 6 microtubes: [22] ZHAO Z Y, CHEN H M, WANG N, et al. Hydrogen storage
Controlled fabrication by using electrospun polyacrylonitrile property of porous/hollow TiO 2 using yeast as template[J]. Rare
microfibers as template and their enhanced visible light photocatalytic Metal Materials and Engineering, 2013, 42(12): 2467-2471.
activity[J]. Journal of Hazardous Materials, 2012, 225/226: 155-163. [23] MA J W, FAN H Q, ZHAO N, et al. Synthesis of In 2O 3 hollow
[11] ZHOU Y G, ZHANG Y F, LIN M S, et al. Monolayered Bi 2WO 6 microspheres for chlorine gas sensing using yeast as bio-template[J].
nanosheets mimicking heterojunction interface with open surfaces for Ceramics International, 2019, 45(7): 9225-9230.
photocatalysis[J]. Nature Communications, 2015, 6(1): 8340. [24] YIN X F, LI X N, GU W, et al. Enhanced photocatalytic activities in
[12] YAN T, SUN M, LIU H Y, et al. Fabrication of hierarchical g-C 3N 4 via hybridization with Bi-Fe-Nb-containing ferroelectric
BiOI/Bi 2MoO 6 heterojunction for degradation of bisphenol A and dye pyrochlore[J]. ACS Applied Materials & Interfaces, 2017, 9(23):
under visible light irradiation[J]. Journal of Alloys & Compounds, 19908-19916.
2015, 634(1): 223-231. [25] XIE Y Y, SHANG X T, LIU D, et al. Non-noble metal thickness-
[13] STELO F, KUBLIK N, ULLAH S, et al. Recent advances in tunable Bi 2MoO 6 nanosheets for highly efficient visible-light-driven
Bi 2MoO 6 based Z-scheme heterojunctions for photocatalytic nitrobenzene reduction into aniline[J]. Applied Catalysis B:
degradation of pollutants[J]. Journal of Alloys and Compounds, Environmental, 2019, 259: 118087.
2020, 829: 154591. [26] FANG X C, YAO M D, GUO L Y, et al. One-step, solventless and
[14] KUMAR R, SUDHAIK A, RAIZADA P, et al. An overview on scalable mechanosynthesis of WO 3·2H 2O ultrathin narrow nanosheets
bismuth molybdate based photocatalytic systems: Controlled with superior UV-visible-light-driven photocatalytic activity[J]. ACS
morphology and enhancement strategies for photocatalytic water Sustainable Chemistry & Engineering, 2017, 5(11): 10735-10743.
purification[J]. Journal of Environmental Chemical Engineering, [27] LI Q Q, ZHAO W L, ZHAI Z C, et al. 2D/2D Bi 2MoO 6/g-C 3N 4
2020, 8(5): 104291. S-scheme heterojunction photocatalyst with enhanced visible- light
[15] ZHOU J (周进), DING L (丁玲), ZHANG T (张婷), et al. activity by Au loading[J]. Journal of Materials Science &
Preparation and properties of g-C 3N 4/CQDs photocatalytic Technology, 2020, 56: 216-226.
materials[J]. Fine Chemicals (精细化工), 2020, 37(4): 702-709. [28] MA T J, WU J, MI Y D, et al. Novel Z-Scheme g-C 3N 4/C@Bi 2MoO 6
[16] MALIK R K, TOMER V. State-of-the-art review of morphological composite with enhanced visible-light photocatalytic activity for
advancements in graphitic carbon nitride (g-CN) for sustainable β-naphthol degradation[J]. Separation & Purification Technology,
hydrogen production[J]. Renewable and Sustainable Energy 2017, 183: 54-65.
Reviews, 2021, 135: 110235. [29] LIU W Q (刘维桥). Practical methods in the study of solid
[17] LV J L, DAI K, ZHANG J F, et al. Facile synthesis of Z-scheme catalyst[M]. Beijing: China Petrochemical Press (中国石化出版社),
graphitic-C 3N 4/Bi 2MoO 6 nanocomposite for enhanced visible 2000: 9-17.
photocatalytic properties[J]. Applied Surface Science, 2015, 358: [30] XIAO K, HUANG H W, TIAN N, et al. Mixed-calcination synthesis
377-384. of Bi 2MoO 6/g-C 3N 4 heterojunction with enhanced visible-light-
[18] SELVAKUMAR R, NAGARAJAN S, PALANISAMI T, et al. responsive photoreactivity for RhB degradation and photocurrent
Recent advances in the synthesis of inorganic nano/microstructures generation[J]. Materials Research Bulletin, 2016, 83: 172-178.
using microbial biotemplates and their applications[J]. RSC Advances, [31] YIN J (尹健). The controllable synthesis and study on photocatalytic
2014, 4: 52156-52169. properties of nanoscale bismuth sulphide and compound materials[D].
[19] YANG L (杨莉), GOU H G (苟海刚), LI X (李旭), et al. Synthesis Hefei: Anhui University (安徽大学), 2018.
and catalytic performance of biotemplated iron molybdate hollow [32] WANG Y M, CAI H Y, QIAN F F, et al. Facile one-step synthesis of
microspheres[J]. Materials Reports (材料导报), 2016, 30(14): 39-43. onion-like carbon modified ultrathin g-C 3N 4 2D nanosheets with
[20] LIU M (刘铭), ZHANG L (张黎), ZHA R Y (查柔艳), et al. enhanced visible-light photocatalytic performance[J]. Journal of
Adsorption-photocatalysis coupling effect with a nano-TiO 2@yeast Colloid and Interface Science, 2019, 533: 47-58.
(上接第 1001 页) 展), 2018, 37(4): 1257-1266.
[22] MIZUSAWA K, IMAI Y, YUASA, K, et al. Process for producing [27] LIU Y W (刘宇文). Study on ellagic acid preparation[D]. Beijing:
ellagic acid: EP0390107B1[P]. 1995-02-08. Beijing University of Chemical Technology (北京化工大学), 2015.
[23] WANG L, LIAN B L, WU W W, et al. Optimization of ellagic acid [28] LEI Y (雷炎). Study of producing ellagic acid from gallic tannin and
purification from pomegranate husk by antisolvent recrystallization[J]. purification of ellagic acid[D]. Beijing: Beijing University of Chemical
Chemical Engineering & Technology, 2018, 41(6): 1188-1198. Technology (北京化工大学), 2007.
[24] OU R W, WEI J, ZHAO C, et al. Monovalent cation-phenolic crystals [29] SHEN Y C, YUAN W H, HSU W H, et al. Color selection in the
with pH-driven reversible crystal transformation[J]. Chemistry-A consideration of color harmony for interior design[J]. Color Research
European Journal, 2019, 25(53): 12281-12287. & Application, 2015, 25(1): 20-31.
[25] HE L (何磊), SU Y (苏毅), JIE T (揭涛), et al. Structural design and [30] ZHANG T Q (张天庆), DU J J (杜健军), CHEN P (陈鹏), et al.
performance analysis of gas-liquid ejector[J]. Chemical Industry and Synthesis and application of 1, 4-diamino-2, 3-phthalimide-anthraquinone
Engineering Progress (化工进展), 2020, 39(4): 1245-1251. dyes[J]. Fine Chemicals (精细化工), 2019, 36(9): 1949-1955.
[26] CHEN A Q (陈阿强), HUANG Q S (黄青山), GENG S J (耿淑君), [31] XIA Z Y, SINGH A, KIRATITANAVIT W, et al. Unraveling the
et al. Hydrodynamic characteristics of gas-liquid two phase flow in mechanism of thermal and thermo-oxidative degradation of tannic
jet reactors[J]. Chemical Industry and Engineering Progress (化工进 acid[J]. Thermochimica Acta, 2015, 605: 77-85.