Page 26 - 《精细化工》2021年第5期
P. 26

·880·                             精细化工   FINE CHEMICALS                                 第 38 卷

            氟、硅元素接枝改性聚合物或天然高分子制备新型                             [12]  REN  T T, YANG  M Q, WANG K  K,  et al. CuO nanoparticles-
            聚合物获得超疏水表面,不仅能够赋予基质低表面                                 containing highly transparent and  superhydrophobic coatings with
                                                                   extremely low bacterial adhesion and excellent bactericidal property
            能,而且能避免全氟化合物、有机硅材料的大量使                                 [J]. ACS Applied Materials & Interfaces, 2018, 10: 25717-25725.
            用,满足绿色环保与成本低廉的要求。其次,在抗                             [13]  WANG B, GUO W L, LIU X Q, et al. Fabrication of silver-decorated
                                                                   popcorn-like polymeric nanoparticles for enhanced antibacterial
            菌材料的选择方面,无机抗菌剂特别是 TiO 2 、ZnO                           activity[J]. Applied Surface Science, 2020, 522: 146318.
            等具有安全性高、耐久性好、耐热性强、不易出现                             [14]  GHOSH M, MONDOL M, MANDAL S,  et al. Enhanced
            耐药性等优点,在其引入过程中若采用具有强黏附                                 photocatalytic and antibacterial activities of mechanosynthesized
                                                                   TiO 2-Ag nanocomposite in wastewater treatment[J]. Journal of
            性的多巴胺直接黏附固定无机抗菌剂,可以简化超                                 Molecular Structure, 2020, 1211: 128076.
            疏水表面的制备过程,是高效简便构建长效超疏水                             [15]  LI N, PRANANTYO D, KANG E T, et al. A simple drop-and-dry
                                                                   approach to grass-Like multifunctional nanocoating on flexible cotton
            抗菌表面的有效途径。                                             fabrics using in situ generated coating solution comprising titanium-
                 随着超疏水抗菌表面被广泛关注,在未来人们                              oxo clusters and silver nanoparticles[J]. ACS Applied Materials &
            期望赋予其额外功能以满足生产生活的进一步需                                  Interfaces, 2020, 10(12): 1209-1210.
                                                               [16]  MADHUMITHA G, ELANGO G, ROOPAN S M. Bio-functionalized
            求,如:阻燃超疏水抗菌表面、导电超疏水抗菌表                                 doped silver nanoparticles and its antimicrobial studies[J]. Journal of
            面、自修复超疏水表面、响应性超疏水抗菌表面等。                                Sol-Gel Science and Technology, 2015, 73(2): 476-483.
                                                               [17]  MISHRA G, MITTAL N, SHARMA A. Multifunctional mesoporous
            因此,若在制备超疏水抗菌表面的过程中同时引入                                 carbon capsules and their robust coatings for encapsulation of actives:
            不同种类的功能型纳米粒子,则能够进一步实现多                                 Antimicrobial and anti-bioadhesion functions[J]. ACS Applied
            功能化、智能化。                                               Materials & Interfaces, 2016, 9(23): 19371-19379.
                                                               [18]  GAO D G, LI Y J, LYU B, et al. Silicone quaternary ammonium salt
                                                                   based nanocomposite: A long-acting antibacterial cotton fabric finishing
            参考文献:
                                                                   agent with good softness and air permeability[J]. Cellulose, 2020,
            [1]   TSUI K H, LI X, TSOI J K H, et al. Low-cost, flexible, disinfectant-   (27): 1055-1069.
                 free and regular-array three-dimensional nanopyramid antibacterial   [19]  ZAVRADASHVILI N, MEMANISHVILI T, KUPATADZE N, et al.
                 films for clinical applications[J]. Nanoscale, 2018, 10: 10436-10442.     Cell compatible arginine containing cationic polymer: One-pot
            [2]   AYDEMIR T, LIVERANI L, PASTORE J I, et al. Functional behavior of   synthesis and preliminary biological assessment[J]. Advances in
                 chitosan/gelatin/silica-gentamicin  coatings  by  electrophoretic  Experimental Medicine and Biology, 2014, 807: 59-73.
                 deposition on surgical grade stainless steel[J]. Materials Science and   [20]  ZHANG Z W (张孜文), ZHANG K M (张康民), YANG J J (杨建军),
                 Engineering: C, 2020:111062.                      et al. Research on the preparation of new antibacterial agents from
            [3]   XIE C (谢超), HONG G H (洪国辉), YANG W Q (杨伟强), et al.   polyhexamethyleneguanidine hydrochloride functionalized hollow
                 Preparation of superhydrophobic, oleophobic and antibacterial coating   nano-silica[J]. Materials Engineering (材料工程), 2020, 48(3): 40-46.
                 using candle dust[J]. Chemical Journal of Chinese Universities (高等  [21]  SHENG  L, ZHOU H L. Synthesis and antibacterial activity of
                 学校化学学报), 2019, 40(2): 187-192.                    fluorinated carbazoles[J]. Chemical Papers, 2019, 73: 2477-2484.
            [4]   ZHAO Z E (赵泽恩), LI D Y (李丹媛), HU Y M (胡永茂), et al.   [22] ZHOU Y (周莹), XIAO L J (肖利吉), YAO L (姚丽), et al. Research
                 Research progress on corrosion resistance of superhydrophobic   progress in self-healing superhydrophobic materials[J]. Materials
                 aluminum surface[J]. Material Sciences (材料科学), 2018,  8(5):   Review (材料导报), 2019, 33(7): 1234-1242.
                 463-470.                                      [23]  FANG C, GUAN D B, YAO W G, et al. Studies on mechanical and
            [5]   SONG L G, SUN L W, ZHAO J, et al. Synergistic superhydrophobic   thermal properties  of epoxy resin modified  by fluorine-containing
                 and photodynamic cotton textiles with remarkable antibacterial   silicone[J]. Applied Mechanics and Materials, 2013, 401/402/403:
                 activities[J]. ACS Applied Bio Materials, 2019, 2: 2756-2765.     713-716.
            [6]   ZHANG M, WANG P, SUN H Y,  et al. Superhydrophobic surface   [24]  LIU Z, ZHAO Y H, ZHOU J W, et al. Synthesis and characterization
                 with hierarchical architecture and bimetallic composition for enhanced   of core-shell polyacrylate latex containing fluorine/silicone in the
                 antibacterial activity[J]. ACS Applied Materials & Interfaces, 2014,   shell and the self-stratification film[J]. Colloid and Polymer Science,
                 6(24): 22108-22115.                               2012, 290(3): 203-211.
            [7]   ALDABALDETRECU M, PARRA M, SOTO S, et al. New copper   [25]  FU Y, JIANG J, ZHANG Q H, et al. Robust liquid-repellent coatings
                 (Ⅰ) complex with  a coumarin as ligand with antibacterial activity   based on  polymer nanoparticles with excellent self-cleaning and
                 against flavobacterium psychrophilum[J]. Molecules, 2020, 25(14):   antibacterial performances[J]. Journal of Materials Chemistry A,
                 3183.                                             2017, 5(1): 275-284.
            [8]   HE Z W, ZHANG Z L, HE J Y. CuO/Cu based superhydrophobic and   [26]  SONG Y M (宋彦敏), ZHOU L N (周连宁), HAO W L (郝文龙),
                 self-cleaning surfaces[J]. Scripta Materialia, 2016, 118: 60-64.   et al. Pollution status  of perfluorinated compounds and research
            [9]   HUANG D J, LU T S. Fabrication of a wettability-gradient surface   progress at home and abroad[J]. Environmental Engineering (环境工
                 on copper by screen-printing techniques[J]. Journal of Micromechanics   程), 2017, 35(10): 87-91.
                 & Microengineering, 2015, 25(8): 1325-1336.   [27]  ZHANG J (章杰),  ZHANG X Q (张晓琴). New regulations, new
            [10]  SUVANI S, RASHIKA S, DIPAK K, et al. Electrodeposited Cu 2O   substitutes and new issues for banning fluorine-containing finishing
                 nanopetal architecture as a superhydrophobic and antibacterial   agents in the past 10 years (to be continued)[J]. Printing and Dyeing
                 surface[J]. Langmuir, 2019, 35: 17166-17176.      Auxiliaries (印染助剂), 2018, 35(1): 9-15.
            [11]  SASMALI A K,  MONDOL C, SINHA A K,  et al. Fabrication of   [28]  BI Y C, WANG Z Y, LU L L, et al. A facile route to engineer highly
                 superhydrophobic copper surface on various substrates for roll-off,   superhydrophobic antibacterial  film through  polymerizable emulsifier
                 self-cleaning, and water/oil separation[J]. ACS Applied Materials &   [J]. Progress in Organic Coatings, 2019, (133): 387-394.
                 Interfaces, 2014, 6(24): 22034-22043.         [29]  LIU J, DONG C H, WEI D D, et al. Multifunctional antibacterial and
   21   22   23   24   25   26   27   28   29   30   31