Page 22 - 《精细化工》2021年第7期
P. 22

·1304·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 Materials Research Bulletin, 2019, 112: 142-146.   [63]  KALYTCHUK S, ZHOVTIUK O, KERSHAW S V, et al. Temperature-
            [44]  CAO J,  TAO S, BOBBERT P A,  et al. Interstitial occupancy by   dependent exciton and trap-related photoluminescence of CdTe
                 extrinsic alkali cations in perovskites and its impact on ion migration[J].   quantum dots embedded in a NaCl matrix: Implication in thermometry[J].
                 Advanced Materials, 2018, 30(26): 1707350-1707358.   Small, 2016, 12(4): 466-476.
            [45]  LI S, SHI Z F, ZHANG F, et al. Sodium doping-enhanced emission   [64]  YADAV S K, GRANDHI G K,  DUBAL  D P,  et al. Metal halide
                 efficiency and stability of CsPbBr 3 nanocrystals for white light-   perovskite@metal-organic framework hybrids: Synthesis, design,
                 emitting devices[J]. Chemistry of Materials, 2019, 31(11): 3917-3928.   properties, and applications[J]. Small, 2020, 16(47): 2004891-2004897.
            [46]  FU H B, HE X X, LIU P,  et al.  Multi-color perovskite nanowire   [65]  ADAM M, WANG Z, DUBAVIK A, et al. Semiconductor
                 lasers through kinetically controlled solution growth followed by   nanocrystals: Liquid-liquid diffusion-assisted crystallization: A fast
                 gas-phase halide exchange[J]. Journal of Materials Chemistry C,   and versatile approach toward high quality mixed quantum dot-salt
                 2017, 5(48): 12707-12713.                         crystals[J]. Advanced Functional Materials, 2015, 25(18): 2783.
            [47]  BI C H, WANG S X, WEN W, et al. Room-temperature construction   [66]  LOU S Q, XUAN T T, YU C Y, et al. Nanocomposites of CsPbBr 3
                 of  mixed-halide perovskite quantum  dots  with high photoluminescence   perovskite nanocrystals in an ammonium bromide framework with
                 quantum yield[J].  The Journal of Physical Chemistry C, 2018, 122(9):   enhanced stability[J]. Journal of Materials Chemistry C, 2017, 5(30):
                 5151-5160.                                        7431-7435.
            [48]  RAJA S N,  BEKENSTEIN Y, KOC  M A,  et al. Encapsulation  of   [67]  RAVI V K, SCHEIDT R A, NAG A,  et al. To exchange or not to
                 perovskite nanocrystals into macroscale polymer matrices: Enhanced   exchange. Suppressing anion exchange in cesium lead halide perovskites
                 stability and polarization[J]. ACS Applied Materials &  Interfaces,   with PbSO 4-oleate capping[J]. ACS Energy  Letters,  2018, 3(4):
                 2016, 8(51): 35523-35533.                         1049-1055.
            [49]  HWANG I, JEONG I, LEE J, et al. Enhancing stability of perovskite   [68]  LI W P, SU C H, CHANG Y C, et al. Ultrasound-induced reactive
                 solar cells to moisture by the facile hydrophobic passivation[J]. ACS   oxygen species mediated therapy and imaging using a fenton reaction
                 Applied Materials & Interfaces, 2015, 7(31): 17330-17336.   activable polymersome[J]. ACS Nano, 2016, 10(2): 2017-2027.
            [50]  HOU S C, GUO Y Z, TANG Y G, et al. Synthesis and stabilization of   [69]  ZHANG Y, SHAH  T, DEEPAK F L,  et al. Surface science and
                 colloidal perovskite  nanocrystals  by multidentate polymer micelles[J].   colloidal stability of double-perovskite Cs 2AgBiBr 6 nanocrystals and
                 ACS Applied Materials & Interfaces, 2017, 9(22): 18417-18422.   their superlattices[J]. Chemistry of Materials, 2019, 31(19): 7962-7969.
            [51]  LI Y , LV Y , GUO Z Q, et al. One-step preparation of long-term   [70]  LIU Z, BEKENSTEIN Y, YE X, et al. Ligand mediated transformation of
                 stable and flexible CsPbBr 3 perovskite quantum dots/ethylene vinyl   cesium lead bromide perovskite nanocrystals to lead depleted Cs 4PbBr 6
                 acetate copolymer composite films for white LEDs[J]. ACS Applied   nanocrystals[J]. Journal of the American  Chemical  Society,  2017,
                 Materials & Interfaces, 2018, 10: 15888-15894.    139(15): 5309.
            [52]  RAJA S N,  BEKENSTEIN Y, KOC  M A,  et al. Encapsulation  of   [71]  PAN J, SHANG Y Q,  YIN J,  et al. Bidentate ligand-passivated
                 perovskite nanocrystals into macroscale polymer matrices: Enhanced   CsPbI 3  perovskite nanocrystals for  stable near-unity photoluminescence
                 stability and polarization[J]. ACS Applied Materials &  Interfaces,   quantum yield and efficient red light-emitting diodes[J]. Journal of
                 2016, 8(51): 35523-35533.                         the American Chemical Society, 2017, 140(2): 562-565.
            [53]  WONG Y C, NG J  D,  TAN  Z,  et al. Perovskite-initiated   [72]  CHEN B, RUDD P N,  YANG S,  et al.  Imperfections and their
                 photopolymerization for singly dispersed luminescent nanocomposites[J].   passivation in halide perovskite solar cells[J]. Chemical Society
                 Advanced Materials, 2018, 30(21): 1800774.        Reviews, 2019, 48(14): 3842-3867.
            [54]  GAO Y, OGILBY P R. A new technique to quantify oxygen diffusion   [73]  ALMEIDA G, ASHTON  O J,  GOLDONI L, et al. The phosphine
                 in polymer films[J]. Macromolecules, 1992, 25(19): 4962-4966.   oxide route toward lead halide perovskite nanocrystals[J]. Journal of
            [55]  TONG J Y (童建宇). Preparation and optical application of lead   the American Chemical Society, 2018, 140(44): 14878-14886.
                 halide perovskite  nanocrystals and their polymer  composites[D].   [74]  TAN Y S, ZOU Y T, WU L Z, et al. Highly luminescent and stable
                 Nanjing: Nanjing University (南京大学), 2019.         perovskite nanocrystals with octylphosphonic acid  as  a  ligand for
            [56]  MÜLLER M, KAISER M, STACHOWSKI G  M,  et al.     efficient light-emitting diodes[J]. ACS Applied Materials &  Interfaces,
                 Photoluminescence quantum yield and matrix-induced luminescence   2018, 10(4): 3784-3792.
                 enhancement of  colloidal quantum  dots embedded in ionic crystals[J].   [75]  ZHANG B W, LUCA G, CHIARA L, et al. Stable and size tunable
                 Chemistry of Materials, 2014, 26(10): 3231-3237.   CsPbBr 3 nanocrystals synthesized with oleylphosphonic acid[J]. Nano
            [57]  LITA A, Washington A L  Ⅱ, BURGT L V D, et al. Stable efficient   Letters, 2020, 20(12): 8847-8853.
                 solid-state  white-light-emitting  phosphor  with  a  high  [76]  YANG D D, LI X M, ZHOU W H, et al. CsPbBr 3 quantum dots 2.0:
                 scotopic/photopic ratio fabricated from fused CdSe-silica   Benzenesulfonic acid equivalent ligand awakens complete purification[J].
                 nanocomposites[J]. Advanced Materials, 2010, 22(36): 3987-3991.   Advanced Materials, 2019, 31(30): 1900767.
            [58]  LIN J, GOMEZ  L, DE W C,  et al. Direct observation of band   [77]  LIU Y X, LI D, ZHANG L L, et al. Amine- and acid-free synthesis of
                 structure modifications in nanocrystals of CsPbBr 3 perovskite[J].   stable CsPbBr 3 perovskite nanocrystals[J]. Chemistry of Materials,
                 Nano Letters, 2016, 16(11): 7198-7202.            2020, 32(5): 1904-1913.
            [59]  WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles   [78]  XUE Z P, GAO H, LIU W J, et al. Facile room-temperature synthesis
                 integrated with all-inorganic CsPbBr 3 perovskite quantum-dot   of high-chemical-stability nitrogen-doped graphene quantum dot/CsPbBr 3
                 nanocomposites (MP-PQDs) with  high  stability and  wide color   composite[J]. ACS Applied Electronic Materials, 2019, 1(11): 2244-2252.
                 gamut used for backlight display[J]. Angewandte Chemie, 2016,   [79]  KTIEG F, OCHSENBEIN S T, YAKUNIN S, et al. Colloidal CsPbX 3
                 128(28): 8056-8061.                               (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for
            [60]  LIANG X, CHEN M, WANG Q,  et al. Ethanol-precipitable silica-   improved durability and stability[J]. ACS Energy Letters, 2018, 3(3):
                 passivated perovskite nanocrystals incorporated into polystyrene   641-646.
                 microspheres for long-term storage and re-usage[J]. Angewandte   [80]  FLEISCHER H, DIENES Y, MATHIASCH B, et al. Cysteamine and
                 Chemie International Edition, 2019, 58(9): 2799-2803.   its homoleptic complexes with group 12 metal ions. Differences in
            [61]  LOIUDICE  A, SATIS S, OVEISI E,  et al. CsPbBr 3 QD/AlO x   the coordination chemistry of ZnⅡ, CdⅡ, and HgⅡ  with a small
                 inorganic nanocomposites with exceptional stability in water, light,   N,S-donor ligand[J]. Inorganic Chemistry, 2005, 44(22): 8087-8096.
                 and heat[J]. Angewandte Chemie, 2017, 56(36): 10696-10701.   [81]  BI C, KERSHAW S V, ROGACH A L, et al. Improved stability and
            [62]  LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and   photodetector performance of CsPbI 3  perovskite quantum dots by
                 environmentally stable CsPbBr 3/TiO 2  core/shell nanocrystals[J].   ligand exchange  with aminoethanethiol[J]. Advanced Functional
                 Advanced Functional Materials, 2018, 28(1): 1704228.   Materials, 2019, 29(29): 1902446.
   17   18   19   20   21   22   23   24   25   26   27