Page 22 - 《精细化工》2021年第7期
P. 22
·1304· 精细化工 FINE CHEMICALS 第 38 卷
Materials Research Bulletin, 2019, 112: 142-146. [63] KALYTCHUK S, ZHOVTIUK O, KERSHAW S V, et al. Temperature-
[44] CAO J, TAO S, BOBBERT P A, et al. Interstitial occupancy by dependent exciton and trap-related photoluminescence of CdTe
extrinsic alkali cations in perovskites and its impact on ion migration[J]. quantum dots embedded in a NaCl matrix: Implication in thermometry[J].
Advanced Materials, 2018, 30(26): 1707350-1707358. Small, 2016, 12(4): 466-476.
[45] LI S, SHI Z F, ZHANG F, et al. Sodium doping-enhanced emission [64] YADAV S K, GRANDHI G K, DUBAL D P, et al. Metal halide
efficiency and stability of CsPbBr 3 nanocrystals for white light- perovskite@metal-organic framework hybrids: Synthesis, design,
emitting devices[J]. Chemistry of Materials, 2019, 31(11): 3917-3928. properties, and applications[J]. Small, 2020, 16(47): 2004891-2004897.
[46] FU H B, HE X X, LIU P, et al. Multi-color perovskite nanowire [65] ADAM M, WANG Z, DUBAVIK A, et al. Semiconductor
lasers through kinetically controlled solution growth followed by nanocrystals: Liquid-liquid diffusion-assisted crystallization: A fast
gas-phase halide exchange[J]. Journal of Materials Chemistry C, and versatile approach toward high quality mixed quantum dot-salt
2017, 5(48): 12707-12713. crystals[J]. Advanced Functional Materials, 2015, 25(18): 2783.
[47] BI C H, WANG S X, WEN W, et al. Room-temperature construction [66] LOU S Q, XUAN T T, YU C Y, et al. Nanocomposites of CsPbBr 3
of mixed-halide perovskite quantum dots with high photoluminescence perovskite nanocrystals in an ammonium bromide framework with
quantum yield[J]. The Journal of Physical Chemistry C, 2018, 122(9): enhanced stability[J]. Journal of Materials Chemistry C, 2017, 5(30):
5151-5160. 7431-7435.
[48] RAJA S N, BEKENSTEIN Y, KOC M A, et al. Encapsulation of [67] RAVI V K, SCHEIDT R A, NAG A, et al. To exchange or not to
perovskite nanocrystals into macroscale polymer matrices: Enhanced exchange. Suppressing anion exchange in cesium lead halide perovskites
stability and polarization[J]. ACS Applied Materials & Interfaces, with PbSO 4-oleate capping[J]. ACS Energy Letters, 2018, 3(4):
2016, 8(51): 35523-35533. 1049-1055.
[49] HWANG I, JEONG I, LEE J, et al. Enhancing stability of perovskite [68] LI W P, SU C H, CHANG Y C, et al. Ultrasound-induced reactive
solar cells to moisture by the facile hydrophobic passivation[J]. ACS oxygen species mediated therapy and imaging using a fenton reaction
Applied Materials & Interfaces, 2015, 7(31): 17330-17336. activable polymersome[J]. ACS Nano, 2016, 10(2): 2017-2027.
[50] HOU S C, GUO Y Z, TANG Y G, et al. Synthesis and stabilization of [69] ZHANG Y, SHAH T, DEEPAK F L, et al. Surface science and
colloidal perovskite nanocrystals by multidentate polymer micelles[J]. colloidal stability of double-perovskite Cs 2AgBiBr 6 nanocrystals and
ACS Applied Materials & Interfaces, 2017, 9(22): 18417-18422. their superlattices[J]. Chemistry of Materials, 2019, 31(19): 7962-7969.
[51] LI Y , LV Y , GUO Z Q, et al. One-step preparation of long-term [70] LIU Z, BEKENSTEIN Y, YE X, et al. Ligand mediated transformation of
stable and flexible CsPbBr 3 perovskite quantum dots/ethylene vinyl cesium lead bromide perovskite nanocrystals to lead depleted Cs 4PbBr 6
acetate copolymer composite films for white LEDs[J]. ACS Applied nanocrystals[J]. Journal of the American Chemical Society, 2017,
Materials & Interfaces, 2018, 10: 15888-15894. 139(15): 5309.
[52] RAJA S N, BEKENSTEIN Y, KOC M A, et al. Encapsulation of [71] PAN J, SHANG Y Q, YIN J, et al. Bidentate ligand-passivated
perovskite nanocrystals into macroscale polymer matrices: Enhanced CsPbI 3 perovskite nanocrystals for stable near-unity photoluminescence
stability and polarization[J]. ACS Applied Materials & Interfaces, quantum yield and efficient red light-emitting diodes[J]. Journal of
2016, 8(51): 35523-35533. the American Chemical Society, 2017, 140(2): 562-565.
[53] WONG Y C, NG J D, TAN Z, et al. Perovskite-initiated [72] CHEN B, RUDD P N, YANG S, et al. Imperfections and their
photopolymerization for singly dispersed luminescent nanocomposites[J]. passivation in halide perovskite solar cells[J]. Chemical Society
Advanced Materials, 2018, 30(21): 1800774. Reviews, 2019, 48(14): 3842-3867.
[54] GAO Y, OGILBY P R. A new technique to quantify oxygen diffusion [73] ALMEIDA G, ASHTON O J, GOLDONI L, et al. The phosphine
in polymer films[J]. Macromolecules, 1992, 25(19): 4962-4966. oxide route toward lead halide perovskite nanocrystals[J]. Journal of
[55] TONG J Y (童建宇). Preparation and optical application of lead the American Chemical Society, 2018, 140(44): 14878-14886.
halide perovskite nanocrystals and their polymer composites[D]. [74] TAN Y S, ZOU Y T, WU L Z, et al. Highly luminescent and stable
Nanjing: Nanjing University (南京大学), 2019. perovskite nanocrystals with octylphosphonic acid as a ligand for
[56] MÜLLER M, KAISER M, STACHOWSKI G M, et al. efficient light-emitting diodes[J]. ACS Applied Materials & Interfaces,
Photoluminescence quantum yield and matrix-induced luminescence 2018, 10(4): 3784-3792.
enhancement of colloidal quantum dots embedded in ionic crystals[J]. [75] ZHANG B W, LUCA G, CHIARA L, et al. Stable and size tunable
Chemistry of Materials, 2014, 26(10): 3231-3237. CsPbBr 3 nanocrystals synthesized with oleylphosphonic acid[J]. Nano
[57] LITA A, Washington A L Ⅱ, BURGT L V D, et al. Stable efficient Letters, 2020, 20(12): 8847-8853.
solid-state white-light-emitting phosphor with a high [76] YANG D D, LI X M, ZHOU W H, et al. CsPbBr 3 quantum dots 2.0:
scotopic/photopic ratio fabricated from fused CdSe-silica Benzenesulfonic acid equivalent ligand awakens complete purification[J].
nanocomposites[J]. Advanced Materials, 2010, 22(36): 3987-3991. Advanced Materials, 2019, 31(30): 1900767.
[58] LIN J, GOMEZ L, DE W C, et al. Direct observation of band [77] LIU Y X, LI D, ZHANG L L, et al. Amine- and acid-free synthesis of
structure modifications in nanocrystals of CsPbBr 3 perovskite[J]. stable CsPbBr 3 perovskite nanocrystals[J]. Chemistry of Materials,
Nano Letters, 2016, 16(11): 7198-7202. 2020, 32(5): 1904-1913.
[59] WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles [78] XUE Z P, GAO H, LIU W J, et al. Facile room-temperature synthesis
integrated with all-inorganic CsPbBr 3 perovskite quantum-dot of high-chemical-stability nitrogen-doped graphene quantum dot/CsPbBr 3
nanocomposites (MP-PQDs) with high stability and wide color composite[J]. ACS Applied Electronic Materials, 2019, 1(11): 2244-2252.
gamut used for backlight display[J]. Angewandte Chemie, 2016, [79] KTIEG F, OCHSENBEIN S T, YAKUNIN S, et al. Colloidal CsPbX 3
128(28): 8056-8061. (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for
[60] LIANG X, CHEN M, WANG Q, et al. Ethanol-precipitable silica- improved durability and stability[J]. ACS Energy Letters, 2018, 3(3):
passivated perovskite nanocrystals incorporated into polystyrene 641-646.
microspheres for long-term storage and re-usage[J]. Angewandte [80] FLEISCHER H, DIENES Y, MATHIASCH B, et al. Cysteamine and
Chemie International Edition, 2019, 58(9): 2799-2803. its homoleptic complexes with group 12 metal ions. Differences in
[61] LOIUDICE A, SATIS S, OVEISI E, et al. CsPbBr 3 QD/AlO x the coordination chemistry of ZnⅡ, CdⅡ, and HgⅡ with a small
inorganic nanocomposites with exceptional stability in water, light, N,S-donor ligand[J]. Inorganic Chemistry, 2005, 44(22): 8087-8096.
and heat[J]. Angewandte Chemie, 2017, 56(36): 10696-10701. [81] BI C, KERSHAW S V, ROGACH A L, et al. Improved stability and
[62] LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and photodetector performance of CsPbI 3 perovskite quantum dots by
environmentally stable CsPbBr 3/TiO 2 core/shell nanocrystals[J]. ligand exchange with aminoethanethiol[J]. Advanced Functional
Advanced Functional Materials, 2018, 28(1): 1704228. Materials, 2019, 29(29): 1902446.