Page 178 - 《精细化工》2021年第8期
P. 178

·1672·                            精细化工   FINE CHEMICALS                                 第 38 卷

            B 酸位能够促进该反应的高效合成,因而具有更突                                phospholipase A 1-catalyzed transesterification[J]. International
                                                                   Journal of Molecular Sciences, 2014, 15: 15244-15258.
            出的催化活性;此外,与游离脂肪酶催化剂相比,                             [12]  PENG L F, XU X B, MU H L, et al. Production of phospholipids by
            该材料的反应时间更短、反应温度更低、催化剂用                                 lipase-catalyzed acidolysis: Optimization  using response surface
                                                                   methodology[J]. Enzyme and Microbial  Technology, 2002, 31:
            量更少,因而更节能环保、更具有经济性。                                    523-532.
                                                               [13]  YANG S S(杨莎莎), ZHANG J H(张江华), ZHOU D Y(周大勇), et al.
                                                                   Chitosan-derived solid acid as a solvent-free catalyst for fructose
            3   结论                                                 dehydration into 5-hydroxymethylfurural[J]. Fine Chemicals(精细化
                                                                   工), 2019, 36(8) : 1591-1597.
                                                               [14]  CHEN  G, FANG  B S. Preparation of solid acid catalyst from
                (1)本文以 P123 为模板剂,通过水热法和磺                           glucose–starch mixture for biodiesel production[J]. Bioresource
            化法制得 C/Si-SO 3 H 材料,采用 FTIR、拉曼光谱及                      Technology, 2011, 102(3): 2635-2640.
                                                               [15]  JOSHI S S, ZODGE A D, PANDARE K V, et al. Efficient conversion
            Boehm 酸含量滴定等手段进行表征,结果表明所制                              of cellulose to levulinic acid by hydrothermal treatment using
            备催化剂含有大量 B 酸位,是潜在的高效、绿色环                               zirconium dioxide  as a recyclable solid acid catalyst[J]. Industrial
                                                                   and Engineering Chemistry Research, 2014, 53(49): 18796-18805.
            保的 C/Si 固体酸催化剂。                                    [16]  SU F, GUO Y H. Advancements in solid acid catalysts for biodiesel
                                                                   production[J]. Green Chemistry, 2014, 16(6): 2934-2957.
                (2)将 C/Si-SO 3 H 材料用于短碳链结构磷脂的                  [17]  WANG Y,  WANG D,  TAN M H, et  al. Monodispersed hollow
            催化合成反应中,发现当反应温度 40  ℃、反应时间                             SO 3H-functionalized carbon/silica as efficient solid acid catalyst for
                                                                   esterification of oleic acid[J]. ACS Applied Materials and Interfaces,
            6 h、催化剂用量 7%时,C3∶0 和 C4∶0 的接入率可                        2015, 7(48): 26767-26775.
            高达 18.33%和 16.23%,高于游离脂肪酶催化的接入                     [18]  CHANG B B,  TIAN Y L, SHI  W  W,  et al. SO 3H-functionalized
                                                                   mesoporous carbon/silica composite with a spherical morphology
            率 15.52%和 13.37%(催化剂用量 9%,45  ℃,36 h)。                 and its excellent catalytic performance for biodiesel production[J].
                                                                   Journal of Porous Materials, 2013, 20(6): 1423-1431.
            经 4 次循环利用,反应活性无明显降低,说明该催                           [19]  MARDHIAH H H, ONG H C, MASJUKI H H, et al. Investigation of
            化剂具有良好的回收利用性。可见,C/Si-SO 3 H 材                          carbon-based solid acid catalyst from Jatropha curcas  biomass in
                                                                   biodiesel production[J]. Energy Conversion and Management, 2017,
            料催化性能更突出、更高效、循环利用性更好且更                                 144: 10-17.
                                                               [20]  WANG J J, XU W J, REN J W, et al. Efficient catalytic conversion of
            具经济性。因此,C/Si-SO 3 H 材料可作为用于催化                          fructose into hydroxymethyl furfural by a novel carbon-based solid
            制备结构磷脂一种替代生物酶的潜力催化剂,在新                                 acid[J]. Green Chemistry, 2011, 13(10): 2678-2681.
                                                               [21]  RUSSO P A, ANTUNES M M, NEVES P,  et al. Solid  acids with
            型磷脂乳化剂制备中具有巨大的工业应用前景。                                  SO 3H groups and tunable surface properties:  Versatile catalysts for
                                                                   biomass conversion[J]. Journal of Materials Chemistry A, 2014,
            参考文献:                                                  2(30): 11813-11824.
                                                               [22]  MARSAOUI N,  LAPLANTE S,  RAIES A, et al. Incorporation of
            [1]   LI J, WANG X L, ZHANG T, et al. A review on phospholipids and   omega-3 polyunsaturated fatty acids into soybean lecithin: Effect of
                 their main applications in drug delivery systems[J]. Asian Journal of   amines and divalent cations on transesterification by lipases[J].
                 Pharmaceutical Sciences, 2015, 10(2): 81-98.      World Journal of Microbiology and Biotechnology,  2013, 29,
            [2]   HAN L, XU Z J, HUANG J H,  et al. Enzymatically catalyzed   2233-2238.
                 synthesis of  low-calorie structured lipid in a solvent-free system:   [23]  GLASS R L. Alcoholysis, saponification and the preparation of fatty
                 Optimization by  response surface methodology[J]. Journal of   acid methyl esters[J]. Lipids, 1971, 6: 919-925.
                 Agricultural and Food Chemistry, 2011, 59(23): 12635-12642.   [24]  YANG Q, WANG S H, CHEN H G, et al. Evaluation of methylations
            [3]   FLORES J, WHITE B M, BREA R J, et al. Lipids: Chemical tools   and  external/internal  standard quantification of lipids using gas
                 for their synthesis, modification, and analysis[J]. Chemical Society   chromatography-mass spectrometry[J]. Analytical Methods, 2017,
                 Reviews, 2020, 49(14): 4602-4614.
            [4]   ZHANG J H, CHENG K, ZHOU D Y, et al. Efficient synthesis of   9(3): 419-426.
                 structured  phospholipids containing  short-chain fatty acids over a   [25]  FU X B, LI D H, CHEN J, et al. A microalgae residue based carbon
                 sulfonated Zn-SBA-15 catalyst[J]. Journal of Agricultural and Food   solid acid catalyst for biodiesel production[J]. Bioresource
                 Chemistry, 2020, 68(44): 12444-12453.             Technology, 2013, 146: 767-770.
            [5]   XIE W L, QI C. Preparation of low calorie structured lipids catalyzed   [26]  NAKAJIMA K, HARA M. Amorphous carbon with SO 3H groups as
                 by1,5,7-Triazabicyclo [4.4.0] dec-5-ene (TBD) functionalized   a solid acid Brӧnsted catalyst[J]. ACS Catalysis, 2012, 2(7):
                 mesoporous SBA-15 silica in a heterogeneous manner[J]. Journal of   1296-1304.
                 Agricultural and Food Chemistry, 2014, 62(15): 3348-3355.   [27]  SHEN S G, WANG C Y, CAI B, et al. Heterogeneous hydrolysis of
            [6]   XIE W L,  YANG  X L, FAN M L.  Novel solid  base catalyst for   cellulose into glucose over phenolic residue-derived solid acid[J].
                 biodiesel production: Mesoporous SBA-15 silica immobilized with 1,   Fuel, 2013, 113: 644-649.
                 3-dicyclohexyl-2-octylguanidine[J]. Renewable Energy, 2015, 80:   [28]  JIA J (贾进), CHENG L (程璐), ZHANG C (张澄), et al. One-pot
                 230-237.                                          catalytic preparation of 5-hydroxymethylfurural from glucose on
            [7]   ZHANG J H, YANG S S, ZHOU D Y, et al. Efficient production of   mesoporous niobium phosphate[J]. Fine Chemicals (精细化工),
                 medium-chain structured phospholipids over mesoporous organ-   2018, 35(2) : 256-271.
                 osulfonic acid-functionalized SBA-15 Catalysts[J]. Catalysts, 2019,   [29]  LU Y Q,  LIANG  X Z, QI C Z. Synthesis  of  novel carbon/silica
                 9(9): 770.                                        composites based strong acid catalyst and its catalytic activities for
            [8]   XIE W L, ZHANG C. Propylsulfonic and arenesulfonic functionalized   acetalization[J]. Bulletin of Materials Science, 2012, 35(3): 419-424.
                 SBA-15 silica as an efficient and reusable catalyst for the acidolysis   [30]  FERRARI  A,  ROBERTSON J. Interpretation of Raman spectra of
                 of soybean oil with medium-chain fatty acids[J]. Food  Chemistry,   disordered and amorphous carbon[J]. Physical Review B, 2000,
                 2016, 211: 74-82.                                 61(20): 14095-14107.
            [9]   ANG X, CHEN H, XIANG J Q, et al. Preparation and functionality
                 of lipase-catalyzed structured phospholipid[J].  Trends in Food   [31]  LIU W W, CHAI S P, MOHAMED A R, et  al. Synthesis and
                 Science and Nutrition, 2019, 88: 373-383.         characterization of graphene and carbon nanotubes: A review on the
            [10]  GUO Z,  VIKBJERG A F, XU X  B. Enzymatic  modification of   past and recent developments[J]. Journal of Industrial and
                 phospholipids for  functional applications and human nutrition[J].   Engineering Chemistry, 2014, 20(4): 1171-1185.
                 Biotechnology Advances, 2005, 23: 203-259.     [32]  ZHANG J H, YANG S S, ZHANG Z X, et al. An excellent solid acid
            [11]  LI X, CHEN J  F, YANG  B,  et al. Production of structured   catalyst derived from  microalgae residue for fructose dehydration
                 phosphatidylcholine with high content of DHA/EPA by immobilized   into 5-hydroxymethylfurural[J]. ChemistrySelect, 2019, 4(9): 1259-1265.
   173   174   175   176   177   178   179   180   181   182   183