Page 178 - 《精细化工》2021年第8期
P. 178
·1672· 精细化工 FINE CHEMICALS 第 38 卷
B 酸位能够促进该反应的高效合成,因而具有更突 phospholipase A 1-catalyzed transesterification[J]. International
Journal of Molecular Sciences, 2014, 15: 15244-15258.
出的催化活性;此外,与游离脂肪酶催化剂相比, [12] PENG L F, XU X B, MU H L, et al. Production of phospholipids by
该材料的反应时间更短、反应温度更低、催化剂用 lipase-catalyzed acidolysis: Optimization using response surface
methodology[J]. Enzyme and Microbial Technology, 2002, 31:
量更少,因而更节能环保、更具有经济性。 523-532.
[13] YANG S S(杨莎莎), ZHANG J H(张江华), ZHOU D Y(周大勇), et al.
Chitosan-derived solid acid as a solvent-free catalyst for fructose
3 结论 dehydration into 5-hydroxymethylfurural[J]. Fine Chemicals(精细化
工), 2019, 36(8) : 1591-1597.
[14] CHEN G, FANG B S. Preparation of solid acid catalyst from
(1)本文以 P123 为模板剂,通过水热法和磺 glucose–starch mixture for biodiesel production[J]. Bioresource
化法制得 C/Si-SO 3 H 材料,采用 FTIR、拉曼光谱及 Technology, 2011, 102(3): 2635-2640.
[15] JOSHI S S, ZODGE A D, PANDARE K V, et al. Efficient conversion
Boehm 酸含量滴定等手段进行表征,结果表明所制 of cellulose to levulinic acid by hydrothermal treatment using
备催化剂含有大量 B 酸位,是潜在的高效、绿色环 zirconium dioxide as a recyclable solid acid catalyst[J]. Industrial
and Engineering Chemistry Research, 2014, 53(49): 18796-18805.
保的 C/Si 固体酸催化剂。 [16] SU F, GUO Y H. Advancements in solid acid catalysts for biodiesel
production[J]. Green Chemistry, 2014, 16(6): 2934-2957.
(2)将 C/Si-SO 3 H 材料用于短碳链结构磷脂的 [17] WANG Y, WANG D, TAN M H, et al. Monodispersed hollow
催化合成反应中,发现当反应温度 40 ℃、反应时间 SO 3H-functionalized carbon/silica as efficient solid acid catalyst for
esterification of oleic acid[J]. ACS Applied Materials and Interfaces,
6 h、催化剂用量 7%时,C3∶0 和 C4∶0 的接入率可 2015, 7(48): 26767-26775.
高达 18.33%和 16.23%,高于游离脂肪酶催化的接入 [18] CHANG B B, TIAN Y L, SHI W W, et al. SO 3H-functionalized
mesoporous carbon/silica composite with a spherical morphology
率 15.52%和 13.37%(催化剂用量 9%,45 ℃,36 h)。 and its excellent catalytic performance for biodiesel production[J].
Journal of Porous Materials, 2013, 20(6): 1423-1431.
经 4 次循环利用,反应活性无明显降低,说明该催 [19] MARDHIAH H H, ONG H C, MASJUKI H H, et al. Investigation of
化剂具有良好的回收利用性。可见,C/Si-SO 3 H 材 carbon-based solid acid catalyst from Jatropha curcas biomass in
biodiesel production[J]. Energy Conversion and Management, 2017,
料催化性能更突出、更高效、循环利用性更好且更 144: 10-17.
[20] WANG J J, XU W J, REN J W, et al. Efficient catalytic conversion of
具经济性。因此,C/Si-SO 3 H 材料可作为用于催化 fructose into hydroxymethyl furfural by a novel carbon-based solid
制备结构磷脂一种替代生物酶的潜力催化剂,在新 acid[J]. Green Chemistry, 2011, 13(10): 2678-2681.
[21] RUSSO P A, ANTUNES M M, NEVES P, et al. Solid acids with
型磷脂乳化剂制备中具有巨大的工业应用前景。 SO 3H groups and tunable surface properties: Versatile catalysts for
biomass conversion[J]. Journal of Materials Chemistry A, 2014,
参考文献: 2(30): 11813-11824.
[22] MARSAOUI N, LAPLANTE S, RAIES A, et al. Incorporation of
[1] LI J, WANG X L, ZHANG T, et al. A review on phospholipids and omega-3 polyunsaturated fatty acids into soybean lecithin: Effect of
their main applications in drug delivery systems[J]. Asian Journal of amines and divalent cations on transesterification by lipases[J].
Pharmaceutical Sciences, 2015, 10(2): 81-98. World Journal of Microbiology and Biotechnology, 2013, 29,
[2] HAN L, XU Z J, HUANG J H, et al. Enzymatically catalyzed 2233-2238.
synthesis of low-calorie structured lipid in a solvent-free system: [23] GLASS R L. Alcoholysis, saponification and the preparation of fatty
Optimization by response surface methodology[J]. Journal of acid methyl esters[J]. Lipids, 1971, 6: 919-925.
Agricultural and Food Chemistry, 2011, 59(23): 12635-12642. [24] YANG Q, WANG S H, CHEN H G, et al. Evaluation of methylations
[3] FLORES J, WHITE B M, BREA R J, et al. Lipids: Chemical tools and external/internal standard quantification of lipids using gas
for their synthesis, modification, and analysis[J]. Chemical Society chromatography-mass spectrometry[J]. Analytical Methods, 2017,
Reviews, 2020, 49(14): 4602-4614.
[4] ZHANG J H, CHENG K, ZHOU D Y, et al. Efficient synthesis of 9(3): 419-426.
structured phospholipids containing short-chain fatty acids over a [25] FU X B, LI D H, CHEN J, et al. A microalgae residue based carbon
sulfonated Zn-SBA-15 catalyst[J]. Journal of Agricultural and Food solid acid catalyst for biodiesel production[J]. Bioresource
Chemistry, 2020, 68(44): 12444-12453. Technology, 2013, 146: 767-770.
[5] XIE W L, QI C. Preparation of low calorie structured lipids catalyzed [26] NAKAJIMA K, HARA M. Amorphous carbon with SO 3H groups as
by1,5,7-Triazabicyclo [4.4.0] dec-5-ene (TBD) functionalized a solid acid Brӧnsted catalyst[J]. ACS Catalysis, 2012, 2(7):
mesoporous SBA-15 silica in a heterogeneous manner[J]. Journal of 1296-1304.
Agricultural and Food Chemistry, 2014, 62(15): 3348-3355. [27] SHEN S G, WANG C Y, CAI B, et al. Heterogeneous hydrolysis of
[6] XIE W L, YANG X L, FAN M L. Novel solid base catalyst for cellulose into glucose over phenolic residue-derived solid acid[J].
biodiesel production: Mesoporous SBA-15 silica immobilized with 1, Fuel, 2013, 113: 644-649.
3-dicyclohexyl-2-octylguanidine[J]. Renewable Energy, 2015, 80: [28] JIA J (贾进), CHENG L (程璐), ZHANG C (张澄), et al. One-pot
230-237. catalytic preparation of 5-hydroxymethylfurural from glucose on
[7] ZHANG J H, YANG S S, ZHOU D Y, et al. Efficient production of mesoporous niobium phosphate[J]. Fine Chemicals (精细化工),
medium-chain structured phospholipids over mesoporous organ- 2018, 35(2) : 256-271.
osulfonic acid-functionalized SBA-15 Catalysts[J]. Catalysts, 2019, [29] LU Y Q, LIANG X Z, QI C Z. Synthesis of novel carbon/silica
9(9): 770. composites based strong acid catalyst and its catalytic activities for
[8] XIE W L, ZHANG C. Propylsulfonic and arenesulfonic functionalized acetalization[J]. Bulletin of Materials Science, 2012, 35(3): 419-424.
SBA-15 silica as an efficient and reusable catalyst for the acidolysis [30] FERRARI A, ROBERTSON J. Interpretation of Raman spectra of
of soybean oil with medium-chain fatty acids[J]. Food Chemistry, disordered and amorphous carbon[J]. Physical Review B, 2000,
2016, 211: 74-82. 61(20): 14095-14107.
[9] ANG X, CHEN H, XIANG J Q, et al. Preparation and functionality
of lipase-catalyzed structured phospholipid[J]. Trends in Food [31] LIU W W, CHAI S P, MOHAMED A R, et al. Synthesis and
Science and Nutrition, 2019, 88: 373-383. characterization of graphene and carbon nanotubes: A review on the
[10] GUO Z, VIKBJERG A F, XU X B. Enzymatic modification of past and recent developments[J]. Journal of Industrial and
phospholipids for functional applications and human nutrition[J]. Engineering Chemistry, 2014, 20(4): 1171-1185.
Biotechnology Advances, 2005, 23: 203-259. [32] ZHANG J H, YANG S S, ZHANG Z X, et al. An excellent solid acid
[11] LI X, CHEN J F, YANG B, et al. Production of structured catalyst derived from microalgae residue for fructose dehydration
phosphatidylcholine with high content of DHA/EPA by immobilized into 5-hydroxymethylfurural[J]. ChemistrySelect, 2019, 4(9): 1259-1265.