Page 184 - 《精细化工》2021年第8期
P. 184

·1678·                            精细化工   FINE CHEMICALS                                 第 38 卷

                        +
            (4)求出 Li 的扩散系数 D          + 。                      [8]   VANAPHUTI P,  CHEN J J, CAO J  Y,  et al. Enhanced
                                     Li                            electrochemical performance of the lithium-manganese rich cathode
                          Z   R   e  R   ct    1/2     (3)   for Li-ion  batteries with Na and F Co-doping[J].  ACS  Applied
                                                                   Materials Interfaces, 2019, 11: 37842-37849.
                                            2
                                              2
                               2
                                     2 4 4
                       D  +   R T  2  / 2A n  F C      (4)   [9]   KANG Y Q, LIANG Z, ZHAO Y,  et al. Large-scale synthesis of
                         Li                                        lithium- and manganese-rich materials with uniform thin-film Al 2O 3
            式中:Z'是实部阻抗(Ω),R e 是电解液阻抗(Ω),                           coating for stable cathode cycling[J]. Science China Materials, 2020,
                                                                   63(9): 1683-1692.
            ω 是低频区的角频率(Hz),σ 是 Z'和 ω            –1/2  线性关系     [10]  KARTHIKEYAN K, AMARESH S, LEE G W, et al. Electrochemical
                                                                   performance of cobalt free, Li 1.2(Mn 0.32Ni 0.32Fe 0.16)O 2 cathodes for
            的斜率,R 是摩尔气体常数〔R=8.314 J/(mol·K)〕,                      lithium batteries[J]. Electrochimica Acta, 2012, 68: 246-253.
            T 是开尔文温度(T=298.15 K),A 是电极片的表面                     [11]  ZHAO T L, ZHANG Y X, LI Y T, et al. Electrochemical activation
                                                                   of novel Fe-based Li-rich cathode  material for lithium-ion
                          2
            积(A=1.13 cm ),n 是参与反应的电子数目(n=                          batteries[J]. Journal of Alloys and Compounds, 2018, 741: 597-603.
                                                               [12]  ZHAO Y J, WANG Y, JI C W, et al. Electrochemistry and structure
            1.2 mol),F 是法拉第常数(F=96500 C/mol),C 是                   of Li-rich cathode composite: Li 1.26Fe 0.22Mn 0.52O 2 in situ integrated
                                                  3
            固体中锂离子的摩尔浓度(0.0496 mol/cm )              [28] 。        with conductive network graphene oxide for lithium-ion batteries[J].
                                                                   RSC Advances, 2016, 6: 31762-31768.
                 经计算得出,3 种材料的扩散系数 D                + 分别为       [13]  TABUCHI M,  NAKASHIMA A,  ADO K,  et al. The effects of
                                                  Li               preparation condition and dopant on the electrochemical property for
                                                2
            4.1910 –17 、2.1210 –16  和 1.6710 –16  cm /s。LFMO-   Fe-substituted Li 2MnO 3[J] .  Journal of Power Sources, 2005,
                                                                   146(1/2): 287-293.
            450 具有较小的电荷转移阻抗,并具有较大的 D                    + ,    [14]  TABUCHI M, NABESHIMA Y, ADO K,  et al. Material design
                                                       Li
                                                                   concept for  Fe-substituted Li 2MnO 3-based positive electrodes[J].
            这说明生长良好的均匀纳米颗粒有利于降低材料内                                 Journal of Power Sources, 2007, 174(2): 554-559.
                           +
            部阻抗,提升 Li 在晶胞内迁移速率,从而表现出较                          [15]  SHUKLA A K, RAMASSE Q M,  OPHUS C,  et al. Effect of
                                                                   composition on the structure of lithium  and  manganese-rich
            好的倍率与循环性能。                                             transition metal oxides[J]. Energy Environmental Science, 2018,
                                                                   11(4): 830-840.
                                                               [16]  ZUO Y X, MA J, JIANG N, et al. Effects of particle size on voltage
            3    结论                                                fade for Li-rich Mn-based layered oxides[J]. ACS Omega, 2018, 3:
                                                                   11136-11143.
                                                               [17]  ZHAO  Y J, SUN  Y C, YUE  Y Y,  et al. Carbon modified Li-rich
                 通过低 温自 蔓延燃 烧法 在 450 ℃下合成了                         cathode materials Li 1.26Fe 0.22Mn 0.52O 2 synthesized  via molten  salt
            Li 1.2 Fe 0.2 Mn 0.6 O 2 纳米颗粒。XRD 分析表明,LFMO-           method with excellent rate ability for Li-ion  batteries[J].
                                                                   Electrochimica Acta, 2014, 130: 66-75.
            450 是典型的 α-NaFeO 2 层状结构,晶粒尺寸为                      [18]  TABUCHI M, NABESHIMA  Y, TAKEUCHI T,  et al. Fe content
                                                                   effects on electrochemical properties of Fe-substituted Li 2MnO 3
            10.6 nm。SEM 分析表明,LFMO-450 为粒径分布在                       positive electrode  material[J]. Journal of Power Sources, 2010,
            45~88 nm 的纳米颗粒。LFMO-450 在 0.1 C 倍率下                    195(3): 834-844.
                                                               [19]  ZHAN T L, CHEN S, LI L, et al. Organic-acid-assisted fabrication of
            首次充电比容量为 242.1 mA·h/g,放电比容量为                           low-cost Li-rich cathode material (Li[Li 1/6Fe 1/6Ni 1/6Mn 1/2]O 2) for
                                                                   lithium-ion battery[J]. ACS Applied Materials Interfaces, 2014, 6:
            237.5 mA·h/g,具有较高的比容量。经充放电测试后,                         22305-22315.
                                                               [20]  ZHANG Q T, MEI J T, XIE X L, et al. Solution combustion synthesis
            材料拥有良好的倍率与循环性能。与含 Co、Ni 等
                                                                   and  enhanced  electrochemical  performance  Li 1.2Ni 0.2Mn 0.6O 2
                                                                                          –
                                                                                                 –
            富锂材料相比,富锂铁锰固溶体 Fe 资源丰富、合成                              nanoparticles by controlling NO 3/CH 3COO  ratio of the
                                                                   precursors[J]. Materials Research Bulletin, 2015, 70: 397-402.
            温度低、低成本,是下一代高性能锂离子电池的理                             [21]  TAN D X (谭德新), ZOU X (邹夏), JIAN J T (简杰婷),  et al.
            想正极材料。                                                 Synthesis of  PANI by lyotropic liquid crystal template and its
                                                                   electrical property[J]. New Chemical Materials (化工新型材料),
                                                                   2020, 48(4): 129-131, 135.
            参考文献:                                              [22]  WU F, ZHANG  X X, ZHAO T L,  et al. Multifunctional AlPO 4
                                                                   coating  for improving electrochemical properties of low-cost
            [1]   LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J].   Li[Li 0.2Fe 0.1Ni 0.15Mn 0.55]O 2 cathode materials for lithium-ion
                 Advanced Materials, 2010, 22: E28-E62.            batteries[J]. ACS Applied Materials Interfaces, 2015, 7(6): 3773-3781.
            [2]   YU X L (于小林), WU X M (吴显明), DING X X (丁心雄), et al.   [23]  LIU X H, WANG Z Y, ZHUANG W D, et al. Reinforcing the surface
                 Preparation and electrochemical performances of Li 4Ti 5O 12-C   conductivity and stability of primary particles for high-performance
                 composite materials[J]. Fine Chemicals (精细化工), 2018, 7(35):   Li-rich layered  Li 1.18Mn 0.52Co 0.15Ni 0.15O 2  via an integrated
                 1216-1220.                                        strategy[J]. Inorganic Chemistry Frontiers, 2020, 7(17): 3154-3164.
            [3]   THACKERAY M  M, JOHNSON C S, VAUGHEY J T,  et al.   [24]  SETENI B, RAPULENYANE N, NGILA J C, et al. Coating effect of
                 Advances in manganese-oxide 'composite' electrodes for lithium-ion   LiFePO 4 and Al 2O 3 on Li 1.2Mn 0.54Ni 0.13Co 0.13O 2 cathode surface for
                 batteries[J]. Journal of Materials Chemistry, 2005, 15: 2257-2267.     lithium ion batteries[J]. Journal of Power Sources, 2017, 353:
            [4]   THACKERAY M M, KANG S H, JOHNSON C S, et al. Comments   210-220.
                 on the structural complexity of lithium-rich Li 1+xM 1–xO 2 electrodes   [25]  CHENG X L, WEI H Z,  HAO  W J,  et al. A cobalt free
                 (M=Mn, Ni, Co) for lithium batteries[J]. Electrochemistry   Li(Li 0.16Ni 0.19Fe 0.18Mn 0.46)O 2 cathode for lithium-ion batteries with
                 Communications, 2006, 8: 1531-1538.               anionic redox involved[J]. ChemSusChem, 2019, 12(6): 1162-1168.
            [5]   THACKERAY M M, KANG S  H, JOHNSON  C S,  et al.   [26]  WU Z L, XIE H J, ZHANG F C, et al. Insights into the chemical and
                 Li 2MnO 3-stabilized LiMO 2 (M  =  Mn, Ni, Co) electrodes for   structural evolution of Li-rich layered oxide cathode materials[J].
                 lithium-ion batteries[J]. Journal of Materials Chemistry,  2007, 17:   Inorganic Chemistry Frontiers, 2021, 8(1): 127-140.
                 3112-3125.                                    [27]  WANG X Y, HAO H, LIU J L, et al. A novel method for preparation
            [6]   MUHAMMAD S,  KIM H, KIM  Y,  et al. Evidence of reversible   of macroposous lithium nickel manganese oxygen as cathode
                 oxygen participation in anomalously high capacity Li- and Mn-rich   material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56:
                 cathodes for Li-ion batteries[J]. Nanomaterials Energy, 2016, 21:   4065-4069.
                 172-184.                                      [28]  CAI Y X, KU L, WANG L S, et al. Engineering oxygen vacancies in
            [7]   KIM T H, PARK J S, CHANG S K,  et al. The current move of   hierarchically Li-rich layered oxide porous microspheres for
                 lithium ion batteries towards the next phase[J]. Advanced Energy   high-rate lithium ion battery cathode[J]. Science China Materials,
                 Materials, 2012, 2: 860-872.                      2019, 62(10): 1374-1384.
   179   180   181   182   183   184   185   186   187   188   189