Page 184 - 《精细化工》2021年第8期
P. 184
·1678· 精细化工 FINE CHEMICALS 第 38 卷
+
(4)求出 Li 的扩散系数 D + 。 [8] VANAPHUTI P, CHEN J J, CAO J Y, et al. Enhanced
Li electrochemical performance of the lithium-manganese rich cathode
Z R e R ct 1/2 (3) for Li-ion batteries with Na and F Co-doping[J]. ACS Applied
Materials Interfaces, 2019, 11: 37842-37849.
2
2
2
2 4 4
D + R T 2 / 2A n F C (4) [9] KANG Y Q, LIANG Z, ZHAO Y, et al. Large-scale synthesis of
Li lithium- and manganese-rich materials with uniform thin-film Al 2O 3
式中:Z'是实部阻抗(Ω),R e 是电解液阻抗(Ω), coating for stable cathode cycling[J]. Science China Materials, 2020,
63(9): 1683-1692.
ω 是低频区的角频率(Hz),σ 是 Z'和 ω –1/2 线性关系 [10] KARTHIKEYAN K, AMARESH S, LEE G W, et al. Electrochemical
performance of cobalt free, Li 1.2(Mn 0.32Ni 0.32Fe 0.16)O 2 cathodes for
的斜率,R 是摩尔气体常数〔R=8.314 J/(mol·K)〕, lithium batteries[J]. Electrochimica Acta, 2012, 68: 246-253.
T 是开尔文温度(T=298.15 K),A 是电极片的表面 [11] ZHAO T L, ZHANG Y X, LI Y T, et al. Electrochemical activation
of novel Fe-based Li-rich cathode material for lithium-ion
2
积(A=1.13 cm ),n 是参与反应的电子数目(n= batteries[J]. Journal of Alloys and Compounds, 2018, 741: 597-603.
[12] ZHAO Y J, WANG Y, JI C W, et al. Electrochemistry and structure
1.2 mol),F 是法拉第常数(F=96500 C/mol),C 是 of Li-rich cathode composite: Li 1.26Fe 0.22Mn 0.52O 2 in situ integrated
3
固体中锂离子的摩尔浓度(0.0496 mol/cm ) [28] 。 with conductive network graphene oxide for lithium-ion batteries[J].
RSC Advances, 2016, 6: 31762-31768.
经计算得出,3 种材料的扩散系数 D + 分别为 [13] TABUCHI M, NAKASHIMA A, ADO K, et al. The effects of
Li preparation condition and dopant on the electrochemical property for
2
4.1910 –17 、2.1210 –16 和 1.6710 –16 cm /s。LFMO- Fe-substituted Li 2MnO 3[J] . Journal of Power Sources, 2005,
146(1/2): 287-293.
450 具有较小的电荷转移阻抗,并具有较大的 D + , [14] TABUCHI M, NABESHIMA Y, ADO K, et al. Material design
Li
concept for Fe-substituted Li 2MnO 3-based positive electrodes[J].
这说明生长良好的均匀纳米颗粒有利于降低材料内 Journal of Power Sources, 2007, 174(2): 554-559.
+
部阻抗,提升 Li 在晶胞内迁移速率,从而表现出较 [15] SHUKLA A K, RAMASSE Q M, OPHUS C, et al. Effect of
composition on the structure of lithium and manganese-rich
好的倍率与循环性能。 transition metal oxides[J]. Energy Environmental Science, 2018,
11(4): 830-840.
[16] ZUO Y X, MA J, JIANG N, et al. Effects of particle size on voltage
3 结论 fade for Li-rich Mn-based layered oxides[J]. ACS Omega, 2018, 3:
11136-11143.
[17] ZHAO Y J, SUN Y C, YUE Y Y, et al. Carbon modified Li-rich
通过低 温自 蔓延燃 烧法 在 450 ℃下合成了 cathode materials Li 1.26Fe 0.22Mn 0.52O 2 synthesized via molten salt
Li 1.2 Fe 0.2 Mn 0.6 O 2 纳米颗粒。XRD 分析表明,LFMO- method with excellent rate ability for Li-ion batteries[J].
Electrochimica Acta, 2014, 130: 66-75.
450 是典型的 α-NaFeO 2 层状结构,晶粒尺寸为 [18] TABUCHI M, NABESHIMA Y, TAKEUCHI T, et al. Fe content
effects on electrochemical properties of Fe-substituted Li 2MnO 3
10.6 nm。SEM 分析表明,LFMO-450 为粒径分布在 positive electrode material[J]. Journal of Power Sources, 2010,
45~88 nm 的纳米颗粒。LFMO-450 在 0.1 C 倍率下 195(3): 834-844.
[19] ZHAN T L, CHEN S, LI L, et al. Organic-acid-assisted fabrication of
首次充电比容量为 242.1 mA·h/g,放电比容量为 low-cost Li-rich cathode material (Li[Li 1/6Fe 1/6Ni 1/6Mn 1/2]O 2) for
lithium-ion battery[J]. ACS Applied Materials Interfaces, 2014, 6:
237.5 mA·h/g,具有较高的比容量。经充放电测试后, 22305-22315.
[20] ZHANG Q T, MEI J T, XIE X L, et al. Solution combustion synthesis
材料拥有良好的倍率与循环性能。与含 Co、Ni 等
and enhanced electrochemical performance Li 1.2Ni 0.2Mn 0.6O 2
–
–
富锂材料相比,富锂铁锰固溶体 Fe 资源丰富、合成 nanoparticles by controlling NO 3/CH 3COO ratio of the
precursors[J]. Materials Research Bulletin, 2015, 70: 397-402.
温度低、低成本,是下一代高性能锂离子电池的理 [21] TAN D X (谭德新), ZOU X (邹夏), JIAN J T (简杰婷), et al.
想正极材料。 Synthesis of PANI by lyotropic liquid crystal template and its
electrical property[J]. New Chemical Materials (化工新型材料),
2020, 48(4): 129-131, 135.
参考文献: [22] WU F, ZHANG X X, ZHAO T L, et al. Multifunctional AlPO 4
coating for improving electrochemical properties of low-cost
[1] LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Li[Li 0.2Fe 0.1Ni 0.15Mn 0.55]O 2 cathode materials for lithium-ion
Advanced Materials, 2010, 22: E28-E62. batteries[J]. ACS Applied Materials Interfaces, 2015, 7(6): 3773-3781.
[2] YU X L (于小林), WU X M (吴显明), DING X X (丁心雄), et al. [23] LIU X H, WANG Z Y, ZHUANG W D, et al. Reinforcing the surface
Preparation and electrochemical performances of Li 4Ti 5O 12-C conductivity and stability of primary particles for high-performance
composite materials[J]. Fine Chemicals (精细化工), 2018, 7(35): Li-rich layered Li 1.18Mn 0.52Co 0.15Ni 0.15O 2 via an integrated
1216-1220. strategy[J]. Inorganic Chemistry Frontiers, 2020, 7(17): 3154-3164.
[3] THACKERAY M M, JOHNSON C S, VAUGHEY J T, et al. [24] SETENI B, RAPULENYANE N, NGILA J C, et al. Coating effect of
Advances in manganese-oxide 'composite' electrodes for lithium-ion LiFePO 4 and Al 2O 3 on Li 1.2Mn 0.54Ni 0.13Co 0.13O 2 cathode surface for
batteries[J]. Journal of Materials Chemistry, 2005, 15: 2257-2267. lithium ion batteries[J]. Journal of Power Sources, 2017, 353:
[4] THACKERAY M M, KANG S H, JOHNSON C S, et al. Comments 210-220.
on the structural complexity of lithium-rich Li 1+xM 1–xO 2 electrodes [25] CHENG X L, WEI H Z, HAO W J, et al. A cobalt free
(M=Mn, Ni, Co) for lithium batteries[J]. Electrochemistry Li(Li 0.16Ni 0.19Fe 0.18Mn 0.46)O 2 cathode for lithium-ion batteries with
Communications, 2006, 8: 1531-1538. anionic redox involved[J]. ChemSusChem, 2019, 12(6): 1162-1168.
[5] THACKERAY M M, KANG S H, JOHNSON C S, et al. [26] WU Z L, XIE H J, ZHANG F C, et al. Insights into the chemical and
Li 2MnO 3-stabilized LiMO 2 (M = Mn, Ni, Co) electrodes for structural evolution of Li-rich layered oxide cathode materials[J].
lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17: Inorganic Chemistry Frontiers, 2021, 8(1): 127-140.
3112-3125. [27] WANG X Y, HAO H, LIU J L, et al. A novel method for preparation
[6] MUHAMMAD S, KIM H, KIM Y, et al. Evidence of reversible of macroposous lithium nickel manganese oxygen as cathode
oxygen participation in anomalously high capacity Li- and Mn-rich material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56:
cathodes for Li-ion batteries[J]. Nanomaterials Energy, 2016, 21: 4065-4069.
172-184. [28] CAI Y X, KU L, WANG L S, et al. Engineering oxygen vacancies in
[7] KIM T H, PARK J S, CHANG S K, et al. The current move of hierarchically Li-rich layered oxide porous microspheres for
lithium ion batteries towards the next phase[J]. Advanced Energy high-rate lithium ion battery cathode[J]. Science China Materials,
Materials, 2012, 2: 860-872. 2019, 62(10): 1374-1384.