Page 63 - 《精细化工》2021年第9期
P. 63

第 9 期            黄剑辉,等:  过渡金属介导的碳氢键后官能团化策略在药物合成中的研究进展                                   ·1777·


            [8]   CHEN X, ENGLE K M, WANG D H, et al. Palladium(Ⅱ )-catalyzed   [29]  ZHAO J P, NANJO T, DE LUCCA J R E C, et al. Chemoselective
                 C—H activation/C—C cross-coupling reactions: Versatility and   methylene oxidation in aromatic  molecules[J]. Nature Chemistry,
                 practicality[J].  Angewandte Chemie International Edition,  2009,   2019, 11(3): 213-221.
                 48(28): 5094-5115.                            [30]  BLANKSBY S J,  ELLISON G  B. Bond dissociation energies  of
            [9]   HONG B K, LUO T P, LEI X G. Late-Stage diversification of natural   organic molecules[J]. Accounts of Chemical Research, 2003, 36(4):
                 products[J]. ACS Central Science, 2020, 6(5): 622-635.   255-263.
            [10]  CANNALIRE R, PELLICCIA S, SANCINETO L, et al. Visible light   [31]  KOIKE T, AKITA M. Fine design of photoredox systems for catalytic
                 photocatalysis in the late-stage functionalization of pharmaceutically   fluoromethylation of carbon-carbon multiple bonds[J]. Accounts  of
                 relevant compounds[J]. Chemical Society Reviews, 2021, 50(2):   Chemical Research, 2016, 49(9): 1937-1945.
                 766-897.                                      [32]  CHARPENTIER  J,  FRÜH  N,  TOGNI  A.  Electrophilic
            [11]  BRGEL J, RITTER T. Late-stage functionalization[J]. Chem, 2020,   trifluoromethylation by use of hypervalent iodine reagents[J].
                 6(8): 1-11.                                       Chemical Reviews, 2015, 115(2): 650-682.
            [12]  KORVORAPUN K,  KUNIYIL  R, ACKERMANN L. Late-stage   [33]  CHEN H Y, SCHLECHT S, SEMPLE T C, et al. Thermal, catalytic,
                 diversification by selectivity switch in meta-C—H activation: Evidence   regiospecific functionalization of alkanes[J]. Science, 2000, 287(5460):
                 for singlet stabilization[J]. ACS Catalysis, 2019, 10(1): 435-440.   1995-1997.
            [13]  BAI Q Q, BAI Z B, WANG H. Macrocyclization of biaryl-bridged   [34]  MKHALID I A,  BARNARD J H,  MARDER  T B, et al. C—H
                                                2
                 peptides through late-stage palladium-catalyzed C(sp )—H arylation[J].   activation for the construction of C—B bonds[J]. Chemical Reviews,
                 Organic Letters, 2019, 21(20): 8225-8228.         2010, 2(110): 890-931.
            [14]  GRYGORENKO O O, BIITSEVA A V, ZHERSH S. Amino sulfonic   [35]  LIU T F, SHEN Q L. Copper-catalyzed trifluoromethylation of aryl
                 acids, peptidosulfonamides and other related compounds[J]. Tetrahedron,   and vinyl boronic  acids with an electrophilic trifluoromethylating
                 2018, 74(13): 1355-1421.                          reagent[J]. Organic Letters, 2011, 13(9): 2342-2345.
            [15]  BAI Q Q,  TANG  J,  WANG H. Functionalization of sulfonamide-   [36]  LIU  T F, SHAO X X,  WU Y  M,  et al. Highly selective
                                                       3
                 containing peptides through late-stage palladium-catalyzed C(sp )—H   trifluoromethylation of 1,3-disubstituted arenes through iridium-
                 arylation[J]. Organic Letters, 2019, 21(15): 5858-5861.     catalyzed arene borylation[J]. Angewandte Chemie International
            [16]  PENG  J, CHEN C,  XI C  J.  β-Arylation of oxime ethers using   Edition, 2012, 51(2): 540-543.
                                                  3
                 diaryliodonium salts through activation of inert C(sp )—H bonds   [37]  JURIS A, BALZANI V, BARIGELLETTI F, et al. Ru( ) polypyridineⅡ
                 using a palladium catalyst[J].  Chemical Science, 2016, 7(2): 1383-   complexes: Photophysics, photochemistry, eletrochemistry, and
                 1387.                                             chemiluminescence[J]. Coordination Chemistry Reviews,  1988, 84:
            [17]  DAI H X, STEPAN A F, PLUMMER M S, et al. Divergent C—H   85-277.
                 functionalizations directed by sulfonamide pharmacophores: Late-stage   [38]  NAGIB D A, MACMILLAN  D W. Trifluoromethylation of arenes
                 diversification as a tool for drug discovery[J]. Journal of the American   and heteroarenes by means of photoredox catalysis[J]. Nature, 2011,
                 Chemical Society, 2011, 133(18): 7222-7228.       480(7376): 224-228.
                              3
            [18]  XU Y, DONG G B. sp  C—H activation via exo-type directing groups[J].   [39]  LIU Z L, XIAO H W, ZHANG B X, et al. Copper-catalyzed remote
                                                                      3
                 Chemical Science, 2018, 9(6): 1424-1432.          C(sp )—H trifluoromethylation of carboxamides and sulfonamides[J].
            [19]  GENSCH T, HOPKINSON M N, GLORIUS F,  et al. Mild  metal-   Angewandte Chemie International Edition, 2019, 58(8): 2510-2513.
                 catalyzed C—H  activation: Examples and concepts[J]. Chemical   [40]  WAELE V D, POIZAT O, FAGNONI M, et al. Unraveling the key
                 Society Reviews, 2016, 45(10): 2900-2936.         features of the reactive state of decatungstate anion in hydrogen atom
            [20]  MAWO R Y, MUSTAKIM S, YOUNG V G, et al. Endo-effect-driven   transfer (HAT) photocatalysis[J]. ACS Catalysis, 2016, 6(10): 7174-
                 regioselectivity in the cyclopalladation of (S)-2-tert-butyl-4-phenyl-   7182.
                 2-oxazoline[J]. Organometallics, 2007, 26(7): 1801-1810.   [41]  RAVELLI D, FAGNONI M, FUKUYAMA  T,  et al. Site-selective
            [21]  ZHU Y L, CHEN  F, CHENG  D H,  et al. Rhodium(Ⅲ )-catalyzed   C — H functionalization by decatungstate anion  photocatalysis:
                 alkenyl C—H functionalization to dienes and allenes[J]. Organic   Synergistic control by polar and steric effects expands the reaction
                 Letters, 2020, 22(22): 8786-8790.                 scope[J]. ACS Catalysis, 2017, 8(1): 701-713.
            [22]  SHOGREN-KNAAK M A, ALAIMO P J, SHOKAT K M. Recent   [42]  SARVER P J, BACAUANU V, SCHULTZ D M, et al. The merger
                                                                                                         3
                 advances in chemical  approaches to the study of biological   of decatungstate and copper catalysis to enable aliphatic C(sp )—H
                 systems[J]. Annual Review of Cell  and Developmental Biology,   trifluoromethylation[J]. Nature Chemistry, 2020, 12(5): 459-467.
                                                                                              3
                 2001, 31(1): 405-433.                         [43]  CHOI G, LEE G S, PARK B, et al. Direct C(sp )—H trifluoromethylation
            [23]  BELSHAW P J, SCHOEPFER J G, LIU K Q, et al. Rational design   of unactivated alkanes enabled by multifunctional trifluoromethyl
                 of orthogonal receptor-ligand combinations[J]. Angewandte Chemie   copper complexes[J]. Angewandte Chemie International Edition,
                 International Edition, 1995, 34(19): 2129-2132.   2021, 60(10): 5467-5474.
            [24]  BARREIRO E J, KÜMMERLE A E, FRAGA C A. The methylation   [44]  FUMAGALLI F, WARRATZ S, ZHANG S K, et al. Arene-ligand-
                 effect in medicinal chemistry[J]. Chemical Reviews, 2011, 111(9):   free ruthenium(ⅡⅢ ) manifold for  meta-C—H alkylation: Remote
                                                                              /
                 5215-5246.                                        purine diversification[J].  Chemistry — A  European Journal, 2018,
            [25]  CERNAK T, DYKSTRA K D, TYAGARAJAN S, et al. The medicinal   24(16): 3984-3988.
                 chemist's toolbox for late stage  functionalization of drug-like   [45]  KORVORAPUN K,  KUNIYIL  R, ACKERMANN L. Late-stage
                 molecules[J]. Chemical Society Reviews, 2016, 45(3): 546-576.   diversification by selectivity switch in meta-C—H activation: Evidence
            [26]  SCHÖNHERR H,  CERNAK T. Profound methyl effects in drug   for singlet stabilization[J]. ACS Catalysis, 2019, 10(1): 435-440.
                 discovery and a call for new C—H methylation reactions[J]. Angewandte   [46]  LEE J S,  CAO H, FUCHS P L. Ruthenium-catalyzed  mild C—H
                 Chemie International Edition, 2013, 52(47): 12256-12267.   oxyfunctionalization of cyclic steroidal ethers[J].  The Journal of
            [27]  FRIIS S D, JOHANSSON M J, ACKERMANN L. Cobalt-catalysed   Organic Chemistry, 2007, 72(15): 5820-5823.
                 C—H  methylation for  late-stage drug  diversification[J]. Nature   [47]  SIMMONS E M,  HARTWIG J F. Catalytic functionalization of
                 Chemistry, 2020, 12(6): 511-519.                  unactivated primary C—H bonds directed by an alcohol[J]. Nature,
            [28]  FENG K B, QUEVEDO R E, KOHRT J T, et al. Late-stage oxidative   2012, 483(7387): 70-73.
                   3
                 C(sp )—H methylation[J]. Nature, 2020, 580(7805): 621-627.   [48]  PlÉ K, CHWALEK M, VOUTQUENNE-NAZABADIOKO L.
   58   59   60   61   62   63   64   65   66   67   68