Page 64 - 《精细化工》2021年第9期
P. 64
·1778· 精细化工 FINE CHEMICALS 第 38 卷
Synthesis of α-hederin, δ-hederin, and related triterpenoid saponins[J]. [59] CASTRO S J, PADRÓN J M, DARSES B, et al. Late-stage Rh(Ⅱ )-
European Journal of Organic Chemistry, 2004, (7): 1588-1603. catalyzed nitrene transfer for the synthesis of guaianolide analogs
[49] GARCÍA-GRANADOS A, LÓPEZ P E, MELGUIZO E, et al. Remote with enhanced antiproliferative activity[J]. European Journal of
hydroxylation of methyl groups by regioselective cyclopalladation. Organic Chemistry, 2021, 12: 1859-1863.
Partial synthesis of hyptatic acid-A[J]. The Journal of Organic [60] LU H J, HU Y, JIANG H L, et al. Stereoselective radical amination
3
Chemistry, 2007, 72(9): 3500-3509. of electron-deficient C(sp )—H bonds by Co( )Ⅱ -based metalloradical
[50] VERMEULEN N A, CHEN M S, WHITE M C. The Fe(PDP)- catalysis: Direct synthesis of α-amino acid derivatives via α-C—H
catalyzed aliphatic C—H oxidation: A slow addition protocol[J]. amination[J]. Organic Letters, 2012, 14(19): 5158-5161.
Tetrahedron, 2009, 65(16): 3078-3084. [61] LU H J, JIANG H L, HU Y, et al. Chemoselective intramolecular
[51] BIGI M A, REED S A, WHITE M C. Diverting non-haem iron allylic C—H amination versus C==C aziridination through Co(Ⅱ )-
catalysed aliphatic C—H hydroxylations towards desaturations[J]. based metalloradical catalysis[J]. Chemical Science, 2011, 2(12):
Nature Chemistry, 2011, 3(3): 216-222. 2361-2366.
[52] BIGI M A, REED S A, WHITE M C. Directed metal (oxo) aliphatic [62] LYASKOVSKYY V, SUAREZ A I O, LU H J, et al. Mechanism of
C—H hydroxylations: Overriding substrate bias[J]. Journal of the cobalt(Ⅱ ) porphyrin-catalyzed C—H amination with organic azides:
American Chemical Society, 2012, 134(23): 9721-9726. Radical nature and H-atom abstraction ability of the key cobalt( )Ⅲ -
[53] ROY A, ROBERTS F G, WILDERMAN P R, et al. 16-Aza-ent- nitrene intermediates[J]. Journal of the American Chemical Society,
beyerane and 16-aza-ent-trachylobane: Potent mechanism-based 2011, 133(31): 12264-12273.
3
inhibitors of recombinant ent-kaurene synthase from Arabidopsis [63] LU H J, LANG K, JIANG H L, et al. Intramolecular 1,5-C(sp )—H
thaliana[J]. Journal of the American Chemical Society, 2007, radical amination via Co(Ⅱ )-based metalloradical catalysis for
129(41): 12453-12460. five-membered cyclic sulfamides[J]. Chemical Science, 2016, 7(12):
[54] WEIN L A, WURST K, ANGYAL P, et al. Synthesis of (–)-mitrephorone 6934-6939.
A via a bioinspired late stage C—H oxidation of (–)-mitrephorone [64] LU H J, LI C Q, JIANG H L, et al. Chemoselective amination of
3
B[J]. Journal of the American Chemical Society, 2019, 141(50): propargylic C(sp )—H bonds by cobalt(Ⅱ )-based metalloradical
19589-19593. catalysis[J]. Angewandte Chemie International Edition, 2014, 53(27):
[55] ALI I, LONE M N, ABOUL-ENEIN H Y. Imidazoles as potential 7028-7032.
anticancer agents[J]. MedChemComm, 2017, 8(9): 1742-1773. [65] LIU W, ZHONG D Y, YU C L, et al. Iron-catalyzed intramolecular
[56] CHEN K, ESCHENMOSER A, BARAN P S. Strain release in C—H amination of aliphatic C—H bonds of sulfamate esters with high
bond activation[J] Angewandte Chemie International Edition, 2009, reactivity and chemoselectivity[J]. Organic Letters, 2019, 21(8):
48(51): 9705-9708. 2673-2678.
[57] ROIZEN J L, ZALATAN D N, DU BOIS J. Selective intermolecular [66] PARADINE S M, WHITE M C. Iron-catalyzed intramolecular allylic
amination of C—H bonds at tertiary carbon centers[J]. Angewandte C—H amination[J]. Journal of the American Chemical Society, 2012,
Chemie International Edition, 2013, 52(43): 11343-11346. 134(4): 2036-2039.
[58] LI J, CISAR J S, ZHOU C Y, et al. Simultaneous structure-activity [67] LIU Y G, GUAN X G, WONG E L M, et al. Nonheme iron-mediated
3
studies and arming of natural products by C—H amination reveal amination of C(sp )—H bonds. Quinquepyridine-supported iron-imide/
cellular targets of eupalmerin acetate[J]. Nature Chemistry, 2013, nitrene intermediates by experimental studies and DFT calculations[J].
5(6): 510-517. Journal of the American Chemical Society, 2013, 135(19): 7194-7204.
(上接第 1764 页) Engineering, 2020, 2020: 1-10.
[57] INBARAJ B S, CHEN B Y, LIAO C W, et al. Green synthesis,
[51] ALMEIDA D A, SABINO R M, SOUZA P R, et al. Pectin-capped characterization and evaluation of catalytic and antibacterial
gold nanoparticles synthesis in-situ for producing durable, activities of chitosan, glycol chitosan and poly(γ-glutamic acid)
cytocompatible, and superabsorbent hydrogel composites with capped gold nanoparticles[J]. International Journal of Biological
chitosan[J]. International Journal of Biological Macromolecules, Macromolecules, 2020, 161: 1484-1495.
2020, 147: 138-149. [58] MU H B, LIU Q J, NIU H, et al. Gold nanoparticles make
[52] DHAHRI A, SERGHEI A, FARZI G, et al. Chitosan- chitosan-streptomycin conjugates effective towards gram-negative
dithiooxamide-grafted rGO sheets decorated with Au nanoparticles: bacterial biofilm[J]. RSC Advances, 2016, 6(11): 8714-8721.
Synthesis, characterization and properties[J]. European Polymer [59] LU B T, LU F, RAN L X, et al. Imidazole-molecule-capped
Journal, 2016, 78: 153-162. chitosan-gold nanocomposites with enhanced antimicrobial activity
[53] PESTOV A, NAZIROV A, MODIN E, et al. Mechanism of Au(Ⅲ) for treating biofilm-related infections[J]. Journal of Colloid &
1
13
reduction by chitosan: Comprehensive study with C and HNMR Interface Science, 2018, 531: 269-281.
analysis of chitosan degradation products[J]. Carbohydrate Polymers, [60] KHAN A, MEHMOOD S, SHAFIQ M, et al. Structural and
2015, 117: 70-77. antimicrobial properties of irradiated chitosan and its complexes with
[54] GUO X L, ZHUANG Q F, JI T J, et al. Multi-functionalized chitosan zinc[J]. Radiation Physics & Chemistry, 2013, 91(10): 138-142.
nanoparticles for enhanced chemotherapy in lung cancer[J]. [61] TU Y S, LI P, SUN J J, et al. Remarkable antibacterial activity of
Carbohydrate Polymers: Scientific and Technological Aspects of reduced graphene oxide functionalized by copper ions[J]. Advanced
Industrially Important Polysaccharides, 2018, 195: 311-320. Functional Materials, 2021, 13(31): 2008018.
[55] HE J, QIAO Y, ZHANG H B, et al. Gold-silver nanoshells promote [62] MALLICK S, SHARMA S, BANERJEE M, et al. Iodine-stabilized
wound healing from drug-resistant bacteria infection and enable Cu nanoparticle chitosan composite for antibacterial applications[J].
monitoring via surface-enhanced Raman scattering imaging[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1313-1323.
Biomaterials, 2020, 234: 119763. [63] LI Q, LU F, ZHOU G F, et al. Silver inlaid with gold
[56] WANG K, WANG H S, PAN S, et al. Evaluation of new film based nanoparticle/chitosan wound dressing enhances antibacterial activity
on chitosan/gold nanocomposites on antibacterial property and and porosity, and promotes wound healing[J]. Biomacromolecules,
wound-healing efficacy[J]. Advances in Materials Science and 2017, 18(11): 3766-3775.