Page 64 - 《精细化工》2021年第9期
P. 64

·1778·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 Synthesis of α-hederin, δ-hederin, and related triterpenoid saponins[J].   [59]  CASTRO S J, PADRÓN J M, DARSES B, et al. Late-stage Rh(Ⅱ )-
                 European Journal of Organic Chemistry, 2004, (7): 1588-1603.   catalyzed nitrene transfer for  the synthesis  of  guaianolide analogs
            [49]  GARCÍA-GRANADOS A, LÓPEZ P E, MELGUIZO E, et al. Remote   with enhanced antiproliferative activity[J]. European Journal of
                 hydroxylation of methyl groups  by regioselective cyclopalladation.   Organic Chemistry, 2021, 12: 1859-1863.
                 Partial synthesis of hyptatic acid-A[J]. The Journal of Organic   [60]  LU H J, HU Y, JIANG H L, et al. Stereoselective radical amination
                                                                                  3
                 Chemistry, 2007, 72(9): 3500-3509.                of electron-deficient C(sp )—H bonds by Co( )Ⅱ -based metalloradical
            [50]  VERMEULEN N  A, CHEN M S,  WHITE M  C. The Fe(PDP)-   catalysis: Direct synthesis of  α-amino acid derivatives via  α-C—H
                 catalyzed aliphatic  C—H oxidation:  A slow addition protocol[J].   amination[J]. Organic Letters, 2012, 14(19): 5158-5161.
                 Tetrahedron, 2009, 65(16): 3078-3084.         [61]  LU H J, JIANG H L, HU  Y,  et al. Chemoselective intramolecular
            [51]  BIGI M A,  REED S A, WHITE M  C. Diverting non-haem iron   allylic C—H amination  versus C==C aziridination through Co(Ⅱ )-
                 catalysed aliphatic C—H hydroxylations towards desaturations[J].   based metalloradical catalysis[J]. Chemical Science, 2011, 2(12):
                 Nature Chemistry, 2011, 3(3): 216-222.            2361-2366.
            [52]  BIGI M A, REED S A, WHITE M C. Directed metal (oxo) aliphatic   [62]  LYASKOVSKYY V, SUAREZ A I O, LU H J, et al. Mechanism of
                 C—H hydroxylations: Overriding substrate bias[J]. Journal of the   cobalt(Ⅱ ) porphyrin-catalyzed C—H amination with organic azides:
                 American Chemical Society, 2012, 134(23): 9721-9726.   Radical nature and H-atom abstraction ability of the key cobalt( )Ⅲ -
            [53]  ROY  A, ROBERTS F G, WILDERMAN P R,  et al. 16-Aza-ent-   nitrene intermediates[J]. Journal of the American Chemical Society,
                 beyerane and  16-aza-ent-trachylobane: Potent mechanism-based   2011, 133(31): 12264-12273.
                                                                                                         3
                 inhibitors of recombinant  ent-kaurene synthase from Arabidopsis   [63]  LU H J, LANG K, JIANG H L, et al. Intramolecular 1,5-C(sp )—H
                 thaliana[J]. Journal of the American Chemical Society, 2007,   radical amination  via Co(Ⅱ )-based metalloradical catalysis for
                 129(41): 12453-12460.                             five-membered cyclic sulfamides[J]. Chemical Science, 2016, 7(12):
            [54]  WEIN L A, WURST K, ANGYAL P, et al. Synthesis of (–)-mitrephorone   6934-6939.
                 A  via a bioinspired late stage  C—H oxidation of (–)-mitrephorone   [64]  LU H J, LI C Q, JIANG H L,  et al. Chemoselective amination of
                                                                             3
                 B[J]. Journal of  the American Chemical Society, 2019, 141(50):   propargylic C(sp )—H bonds by cobalt(Ⅱ )-based metalloradical
                 19589-19593.                                      catalysis[J]. Angewandte Chemie International Edition, 2014, 53(27):
            [55]  ALI I, LONE M  N, ABOUL-ENEIN  H  Y. Imidazoles as potential   7028-7032.
                 anticancer agents[J]. MedChemComm, 2017, 8(9): 1742-1773.   [65]  LIU W, ZHONG D Y, YU C L, et al. Iron-catalyzed intramolecular
            [56]  CHEN K, ESCHENMOSER A, BARAN P S. Strain release in C—H   amination  of aliphatic C—H bonds of sulfamate  esters with high
                 bond activation[J] Angewandte Chemie International Edition, 2009,   reactivity and chemoselectivity[J]. Organic Letters, 2019, 21(8):
                 48(51): 9705-9708.                                2673-2678.
            [57]  ROIZEN J L, ZALATAN D N, DU BOIS J. Selective intermolecular   [66]  PARADINE S M, WHITE M C. Iron-catalyzed intramolecular allylic
                 amination of C—H bonds at tertiary carbon centers[J]. Angewandte   C—H amination[J]. Journal of the American Chemical Society, 2012,
                 Chemie International Edition, 2013, 52(43): 11343-11346.   134(4): 2036-2039.
            [58]  LI J, CISAR J S, ZHOU C Y, et al. Simultaneous structure-activity   [67]  LIU Y G, GUAN X G, WONG E L M, et al. Nonheme iron-mediated
                                                                             3
                 studies and arming of natural products by C—H amination reveal   amination of C(sp )—H bonds. Quinquepyridine-supported iron-imide/
                 cellular targets  of  eupalmerin acetate[J]. Nature Chemistry, 2013,   nitrene intermediates by experimental studies and DFT calculations[J].
                 5(6): 510-517.                                    Journal of the American Chemical Society, 2013, 135(19): 7194-7204.


            (上接第 1764 页)                                           Engineering, 2020, 2020: 1-10.
                                                               [57]  INBARAJ B  S,  CHEN B Y, LIAO C W,  et al. Green synthesis,
            [51]  ALMEIDA D A, SABINO R M, SOUZA P R, et al. Pectin-capped   characterization and evaluation of catalytic and antibacterial
                 gold nanoparticles synthesis  in-situ for  producing durable,   activities of chitosan, glycol chitosan and poly(γ-glutamic acid)
                 cytocompatible, and superabsorbent hydrogel composites with   capped gold nanoparticles[J]. International Journal of Biological
                 chitosan[J]. International Journal of Biological Macromolecules,   Macromolecules, 2020, 161: 1484-1495.
                 2020, 147: 138-149.                           [58]  MU H B, LIU Q J, NIU H,  et al. Gold nanoparticles  make
            [52]  DHAHRI A, SERGHEI A, FARZI G,  et al. Chitosan-   chitosan-streptomycin conjugates effective towards gram-negative
                 dithiooxamide-grafted rGO sheets decorated with Au nanoparticles:   bacterial biofilm[J]. RSC Advances, 2016, 6(11): 8714-8721.
                 Synthesis, characterization and properties[J]. European Polymer   [59]  LU B  T, LU F,  RAN  L X,  et al. Imidazole-molecule-capped
                 Journal, 2016, 78: 153-162.                       chitosan-gold nanocomposites with enhanced antimicrobial activity
            [53]  PESTOV A, NAZIROV A, MODIN E, et al. Mechanism of Au(Ⅲ)   for treating biofilm-related infections[J]. Journal of  Colloid &
                                                     1
                                                13
                 reduction by chitosan: Comprehensive study with  C and  HNMR   Interface Science, 2018, 531: 269-281.
                 analysis of chitosan degradation products[J]. Carbohydrate Polymers,   [60]  KHAN A, MEHMOOD S, SHAFIQ M,  et al. Structural and
                 2015, 117: 70-77.                                 antimicrobial properties of irradiated chitosan and its complexes with
            [54]  GUO X L, ZHUANG Q F, JI T J, et al. Multi-functionalized chitosan   zinc[J]. Radiation Physics & Chemistry, 2013, 91(10): 138-142.
                 nanoparticles for enhanced  chemotherapy in lung cancer[J].   [61]  TU Y S, LI P, SUN J J, et al. Remarkable antibacterial activity of
                 Carbohydrate Polymers: Scientific and  Technological Aspects of   reduced graphene oxide functionalized by copper ions[J]. Advanced
                 Industrially Important Polysaccharides, 2018, 195: 311-320.     Functional Materials, 2021, 13(31): 2008018.
            [55]  HE J, QIAO Y, ZHANG H B, et al. Gold-silver nanoshells promote   [62]  MALLICK S, SHARMA S, BANERJEE M, et al. Iodine-stabilized
                 wound healing from drug-resistant  bacteria infection and enable   Cu nanoparticle chitosan composite for antibacterial applications[J].
                 monitoring  via surface-enhanced Raman scattering imaging[J].   ACS Applied Materials & Interfaces, 2012, 4(3): 1313-1323.
                 Biomaterials, 2020, 234: 119763.              [63]  LI Q,  LU F, ZHOU  G F,  et al. Silver inlaid with gold
            [56]  WANG K, WANG H S, PAN S, et al. Evaluation of new film based   nanoparticle/chitosan wound dressing enhances antibacterial activity
                 on chitosan/gold  nanocomposites on antibacterial property and   and porosity, and promotes wound healing[J]. Biomacromolecules,
                 wound-healing efficacy[J].  Advances in Materials  Science and   2017, 18(11): 3766-3775.
   59   60   61   62   63   64   65   66   67   68   69