Page 70 - 《精细化工》2021年第9期
P. 70
·1784· 精细化工 FINE CHEMICALS 第 38 卷
表 2 石墨烯/聚苯胺基复合物的吸波性能对比
Table 2 Comparison of wave-absorbing properties of graphene/polyaniline based composites
吸波剂 添加质量分数/% RL min/dB 有效吸收频宽/GHz 厚度/mm 参考文献
还原氧化石墨烯/Fe 3O 4/PANI 30 –28.2 5.4 (12.6~18) 2.0 [4]
石墨烯@Fe 3O 4@PANI@TiO 2 50 –41.8 3.5 (12.5~16.2) 1.6 [32]
三维石墨烯@Fe 3O 4@WO 3@PANI 70 –46.7 1.8 (12.4~14.2) 1.5 [33]
盐酸掺杂的 GO/PANI (H-PG) 20 –21.03 4.84 (11.40~16.24) 2.75 本文
H 2SO 4 掺杂的 GO/PANI (S-PG) 20 –20.50 4.76 (11.12~15.88) 1.75 本文
左旋樟脑磺酸掺杂的 GO/PANI (L-PG) 20 –30.00 4.85 (12.30~17.15) 2.00 本文
3 结论 in highly conducting polyaniline: Theoretical and optical studies[J].
Physical Review Letters, 1987, 59(13): 1464.
2–
–
–
(1)同质子浓度掺杂下,Cl 、CSA 和 SO 4 3 [11] ERICKSON K, ERNI R, LEE Z H, et al. Determination of the local
chemical structure of graphene oxide and reduced graphene oxide[J].
种对负离子制备出的 GO/PANI 复合材料均呈现明显 Advanced Materials, 2010, 22(40): 4467-4472.
的 PANI 纳米椎体阵列包覆 GO 片层的三明治形貌。 [12] LIU P B, YAN J, GAO X G, et al. Construction of layer-by-layer
–
2–
(2)对负离子 SO 4 和 CSA 可通过静电吸引或 sandwiched graphene/polyaniline nanorods/carbon nanotubes
high
performance
heterostructures
for
supercapacitors[J].
氢键等相互作用进一步增强 PANI 链间及 PANI 与 Electrochimica Acta, 2018, 272: 77-87.
GO 间的载流子传输,使掺杂产物具有更高的介电 [13] LIU R J (刘日杰). The study on anti-corrosion and microwave
absorption properties of polyaniline based composites[D]. Yangzhou:
存储和损耗能力。 Yangzhou University (扬州大学), 2018.
(3)左旋樟脑磺酸掺杂制备的 GO/PANI 复合 [14] ZHAO J, LIN J P, XIAO J P, et al. Synthesis and electromagnetic,
物驻波比在 14.2 GHz 处约为 1.1,阻抗匹配性能更 microwave absorbing properties of polyaniline/graphene oxide/Fe 3O 4
nanocomposites[J]. RSC Advcances, 2015, 5: 19345-19352.
高,且具有最佳吸波性能,最低反射损耗为–30 dB [15] LIU P B, HUANG Y, YAN J, et al. Magnetic graphene@PANI@
(9.93 GHz,2.75 mm),有效吸波频宽最高可至 porous TiO 2 ternary composites for high-performance electromagnetic
wave absorption[J]. Journal of Matertials Chemistry C, 2016, 4: 6362.
4.85 GHz(12.30~17.15 GHz,2.00 mm)。
[16] CHEN X N, MENG F C, ZHOU Z W, et al. One-step synthesis of
graphene/polyaniline hybrids by in-situ intercalation polymerization
参考文献:
and their electromagnetic properties[J]. Nanoscale, 2014, 6: 8140.
[1] ZHANG B, DUAN Y P, CUI Y L, et al. Improving electromagnetic [17] LIU J, DUAN Y P, SONG L L, et al. Heterogeneous nucleation
properties of FeCoNiSi 0.4Al 0.4 high entropy alloy powders via their promoting formation and enhancing microwave absorption properties
tunable aspect ratio and elemental uniformity[J]. Materials & Design, in hierarchical sandwich-like polyaniline/graphene oxide induced by
2018, 149: 173-183. mechanical agitation[J]. Composites Science and Technology, 2019,
[2] CAO M S, CAI Y Z, HE P, et al. 2D MXenes: Electromagnetic 182: 107780.
property for microwave absorption and electromagnetic interference [18] PRIGODIN V N, EPSTEIN A J. Nature of insulator-metal transition
shielding[J]. Chemical Engineering Journal, 2019, 359: 1265-1302. and novel mechanism of charge transport in the metallic state of
[3] MENG F B, WANG H G, HUANG F, et al. Graphene-based microwave highly doped electronic polymers[J]. Synthetic Metals, 2001, 125(1):
absorbing composites: A review and prospective[J]. Composites Part 43-53.
B: Engineering, 2018, 137: 260-277. [19] MOHAMADZADEH M M H, SABURY S, GUDARZI M M, et al.
[4] LI Q, ZHANG Z, QI L P, et al. Toward the application of high Graphene oxide-induced polymerization and crystallization to produce
frequency electromagnetic wave absorption by carbon nanostructures[J]. highly conductive polyaniline/graphene oxide composite[J]. Journal
Advanced Science, 2019, 6: 1801057. of Polymer Science Part A: Polymer Chemistry, 2014, 52(11): 1545-
[5] ZHAO Y P, ZHANG H, YANG X, et al. In situ construction of 1554.
hierarchical core-shell Fe 3O 4@C nanoparticles-helical carbon [20] HUANGFU Y M, RUAN K P, QIU H, et al. Fabrication and
nanocoil hybrid composites for highly efficient electromagnetic wave investigation on the PANI/MWCNT/thermally annealed graphene
absorption[J]. Carbon, 2020, 171: 395-408. aerogel/epoxy electromagnetic interference shielding nanocomposites[J].
[6] CAO M S, WANG X X, ZHANG M, et al. electromagnetic response Composites Part A: Applied Science and Manufacturing, 2019, 121:
and energy conversion for functions and devices in low-dimensional 265-272.
materials[J]. Advanced Functional Materials, 2019, 29: 1807398. [21] POUGET J P, JOZEFOWICZ M E, EPSTEIN A J, et al. X-ray structure
[7] LI X, YU L J, YU L M, et al. Chiral polyaniline with superhelical of polyaniline[J]. Macromolecules, 1991, 24(3): 779-789.
structures for enhancement in microwave absorption[J]. Chemical [22] HUANG H (黄惠), ZHOU J Y (周继禹), XU J Q (许金泉), et al.
Engineering Journal, 2018, 352: 745-755. Synthesis and properties of conducting polyaniline doped with compound
[8] TU J Q (涂金强), LI Z H (李志宏), ZHU Y M (朱玉梅), et al. organic/inorganic acids[J]. Journal of Chemical Engineering of Chinese
Preparation and characterization of conductive polyaniline/foam glass Universities (高校化学工程学报), 2009, 23(6): 984-989.
absorbing composites[J]. Fine Chemicals (精细化工), 2019, 36(11): [23] WANG H G, MENG F B, HUANG F, et al. Interface modulating
2193-2212. CNTs@PANI hybrids by controlled unzipping of the walls of CNTs
[9] WANG H H (王海花), LUO L (罗璐), LI X R (李小瑞), et al. to achieve tunable high-performance microwave absorption[J]. ACS
Preparation and properties of polyaniline/Fe 3O 4 absorbing Applied Materials & Interfaces, 2019, 11(12): 12142-12153.
materials[J]. Fine Chemicals (精细化工), 2017, 34(9): 988-995.
[10] STAFSTRÖM S, BREDAS J L, EPSTEIN A J, et al. Polaron lattice (下转第 1790 页)