Page 123 - 《精细化工》2022年第1期
P. 123

第 1 期                    聂德财,等: WO 3 /ZnWO 4 复合薄膜的制备及其光电化学性能                             ·113·


            ZnWO 4 转移到 WO 3 再转移到对电极上,另一部分电                     效率约为 61.8%。
                                   –
            子与 O 2 反应形成活性 O 2 ;WO 3 的部分空穴转移到                      (4)WO 3 /ZnWO 4 复合薄膜在催化方面具有广
            ZnWO 4 ,剩余的空穴与 H 2 O 反应形成活性•OH,从                   阔的发展前景,也为 WO 3 /金属钨酸盐材料体系的理
            而使电子空穴不易重组,并获得更大的电导率,进                             论研究提供了参考。
            而增强其光电催化活性,该结果可通过交流阻抗图
                                                               参考文献:
            谱(图 7)进一步证明。因此,WO 3 /ZnWO 4 复合薄
                                                               [1]   YAN  W H (闫万红),  ZHOU Y W  (周言文), YU D (余迪),  et al.
            膜相较于单一 WO 3 纳米薄膜具有更为优异的光电
                                                                   Temperature control system of semiconductor device and application
            流特性和光电催化活性。但 ZnWO 4 沉积超过一定量                            for infrared gas detection[J]. Acta Photonica Sinica, 2019, 48(3):
            后会使 WO 3 /ZnWO 4 复合薄膜的光电流密度减小且                         113-122.
                                                               [2]   WELLMANN P J. Power electronic semiconductor materials for
            光电催化降解效率降低(如图 4 和图 5WO 3 /ZnWO 4 -                     automotive and energy saving applications-SiC, GaN,  Ga 2O 3, and
                                                                   diamond[J]. Zeitschrift  Für  Anorganische Chemie, 2017, 643(21):
            5h 结果所示),这可能是由于过量的沉积使 ZnWO 4
                                                                   1312-1322.
            层变厚,进而覆盖住下层的 WO 3 纳米板状结构,                          [3]   CHAN C C, CHANG C C, HSU W C, et al. Photocatalytic activities
            WO 3 纳米薄膜的光电化学反应位点的数量减少,从                              of Pd-loaded mesoporous TiO 2 thin films[J]. Chemical Engineering
                                                                   Journal, 2009, 152(2/3): 492-497.
            而使 WO 3/ZnWO 4 复合薄膜的光电流密度减小且光电
                                                               [4]   ZHAO W, MA W H, CHEN C C, et al. Efficient degradation of toxic
            催化性能减弱。因此,WO 3/ZnWO 4-3h 具有最高的光                        organic pollutants with Ni 2O 3/TiO 2–x Bx under visible irradiation[J].
            电流密度和光电催化活性。                                           Journal of the American Chemical Society, 2004, 126(15): 4782-
                                                                   4783.

                                                               [5]   UDDIN M M, HASNAT M A, SAMED A J, et al. Influence of TiO 2
                                                                   and ZnO photocatalysts on adsorption and degradation behaviour of
                                                                   Erythrosine[J]. Dyes Pigments, 2007, 75(1): 207-212.
                                                               [6]   SLEIMAN M, CONCHON P, FERRONATO C, et al. Photocatalytic
                                                                   oxidation  of toluene at indoor air levels (ppbv): Towards a better
                                                                   assessment of conversion. Reaction intermediates and mineralization[J].
                                                                   Applied Catalysis B: Environmental, 2009, 86(3/4): 159-165.
                                                               [7]   DUTTA V, SHARMA S, RAIZADA P, et al. An overview on WO 3
                                                                   based photocatalyst for environmental remediation[J]. Journal of
                                                                   Environmental Chemical Engineering, 2021, 9(1): 105018.
                                                               [8]   CONG S, TIAN Y Y, LI Q W, et al. Single-crystalline tungsten oxide
                                                                   quantum dots for fast pseudocapacitor and electrochromic
                                                                   applications[J]. Advanced Materials, 2014, 26(25): 4260-4267.
                                                               [9]   KALANTAR-ZADEH K, VIJAYARAGHAVAN A, HAM M H, et al.
                                                                   Synthesis of atomically thin  WO 3 sheets from hydrated tungsten
                                                                   trioxide[J]. Chemistry of Materials, 2010, 22(19): 5660-5666.
                                                               [10]  TACCA  A, MEDA L, MARRA G,  et al. Photoanodes  based on
                                                                   nanostructured WO 3 for water splitting[J]. ChemPhysChem, 2012,
                                                                   13(12): 3025-3034.
                图 8  WO 3 /ZnWO 4 复合薄膜的光电催化原理图                 [11]  QIN D D, TAO C L, FRIESEN S A, et al. Dense layers of vertically
            Fig. 8    Schematic diagram of photoelectrocatalysis of   oriented WO 3 crystals as anodes for photoelectrochemical water
                    WO 3 /ZnWO 4  composite film                   oxidation[J]. Chemical Communications, 2012, 48(5): 729-731.
                                                               [12]  HORPRATHUM M, SRICHAIYAPERK T, SAMRANSUKSAMER
            3   结论                                                 B, et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO 3
                                                                   nanorods prepared by glancing-angle dc  magnetron sputtering[J].
                                                                   ACS Applied Materials & Interfaces, 2014, 6(24): 22051-22060.
                (1)XRD 图谱分析、SEM 观测都表明不同水热
                                                               [13]  ZHOU J C, LIN S W, CHEN Y J, et al. Facile morphology control of
            反应时长的 ZnWO 4 均匀地生长在 WO 3 纳米薄膜上。                        WO 3 nanostructure  arrays  with enhanced photoelectrochemical
                                                                   performance[J]. Applied Surface Science, 2017, 403: 274-281.
                (2)相较于单一 WO 3 纳米薄膜,WO 3 /ZnWO 4
                                                               [14]  YONG S M, NIKOLAY T, AHN B T, et al. One-dimensional WO 3
            复合薄膜的构建扩展了其对太阳光的吸收范围,促                                 nanorods as photoelectrodes for dye-sensitized solar cells[J]. Journal
            进电子-空穴对的产生,而 WO 3 /ZnWO 4 复合薄膜形                        of Alloys and Compounds, 2013, 547: 113-117.
                                                               [15]  NG C Y, RAZAK K A, LOCKMAN Z. WO 3 nanorods prepared by
            成的异质结结构在利用模拟太阳光照射和施加电压                                 low-temperature seeded growth hydrothermal reaction[J]. Journal of
            的 条件下又 使电子空 穴不易复 合,进而 使                                Alloys and Compounds, 2014, 588: 585-591.
                                                               [16]  QIN Y X,  LIU  C Y,  LIU M,  et al. Nanowire (nanorod) arrays-
            WO 3 /ZnWO 4 复合薄膜的光电流特性和光电催化活                          constructed tungsten oxide hierarchical structure and its unique NO 2-
            性均优于纯 WO 3 纳米薄膜。                                       sensing performances[J]. Journal of Alloys and Compounds, 2014,
                                                                   615: 616-623.
                (3)水热反应时长为 3 h 的 WO 3 /ZnWO 4 复合
                                                               [17]  ZHAN F Q, LI J, LI W Z, et al. In situ formation of CuWO 4/WO 3
            薄膜样品具有最佳的光电化学性能。在电压为 1.6 V                             heterojunction plates array films with enhanced photoelectrochemical
                                                                   properties[J]. International Journal of Hydrogen Energy, 2015,
            时,WO 3 /ZnWO 4 -3h 复合薄膜的光电流密度达到
                                                                   40(20): 6512-6520.
                      2
            2.49 mA/cm 。光电催化降解亚甲基蓝 210 min 时降解                                                (下转第 203 页)
   118   119   120   121   122   123   124   125   126   127   128