Page 123 - 《精细化工》2022年第1期
P. 123
第 1 期 聂德财,等: WO 3 /ZnWO 4 复合薄膜的制备及其光电化学性能 ·113·
ZnWO 4 转移到 WO 3 再转移到对电极上,另一部分电 效率约为 61.8%。
–
子与 O 2 反应形成活性 O 2 ;WO 3 的部分空穴转移到 (4)WO 3 /ZnWO 4 复合薄膜在催化方面具有广
ZnWO 4 ,剩余的空穴与 H 2 O 反应形成活性•OH,从 阔的发展前景,也为 WO 3 /金属钨酸盐材料体系的理
而使电子空穴不易重组,并获得更大的电导率,进 论研究提供了参考。
而增强其光电催化活性,该结果可通过交流阻抗图
参考文献:
谱(图 7)进一步证明。因此,WO 3 /ZnWO 4 复合薄
[1] YAN W H (闫万红), ZHOU Y W (周言文), YU D (余迪), et al.
膜相较于单一 WO 3 纳米薄膜具有更为优异的光电
Temperature control system of semiconductor device and application
流特性和光电催化活性。但 ZnWO 4 沉积超过一定量 for infrared gas detection[J]. Acta Photonica Sinica, 2019, 48(3):
后会使 WO 3 /ZnWO 4 复合薄膜的光电流密度减小且 113-122.
[2] WELLMANN P J. Power electronic semiconductor materials for
光电催化降解效率降低(如图 4 和图 5WO 3 /ZnWO 4 - automotive and energy saving applications-SiC, GaN, Ga 2O 3, and
diamond[J]. Zeitschrift Für Anorganische Chemie, 2017, 643(21):
5h 结果所示),这可能是由于过量的沉积使 ZnWO 4
1312-1322.
层变厚,进而覆盖住下层的 WO 3 纳米板状结构, [3] CHAN C C, CHANG C C, HSU W C, et al. Photocatalytic activities
WO 3 纳米薄膜的光电化学反应位点的数量减少,从 of Pd-loaded mesoporous TiO 2 thin films[J]. Chemical Engineering
Journal, 2009, 152(2/3): 492-497.
而使 WO 3/ZnWO 4 复合薄膜的光电流密度减小且光电
[4] ZHAO W, MA W H, CHEN C C, et al. Efficient degradation of toxic
催化性能减弱。因此,WO 3/ZnWO 4-3h 具有最高的光 organic pollutants with Ni 2O 3/TiO 2–x Bx under visible irradiation[J].
电流密度和光电催化活性。 Journal of the American Chemical Society, 2004, 126(15): 4782-
4783.
[5] UDDIN M M, HASNAT M A, SAMED A J, et al. Influence of TiO 2
and ZnO photocatalysts on adsorption and degradation behaviour of
Erythrosine[J]. Dyes Pigments, 2007, 75(1): 207-212.
[6] SLEIMAN M, CONCHON P, FERRONATO C, et al. Photocatalytic
oxidation of toluene at indoor air levels (ppbv): Towards a better
assessment of conversion. Reaction intermediates and mineralization[J].
Applied Catalysis B: Environmental, 2009, 86(3/4): 159-165.
[7] DUTTA V, SHARMA S, RAIZADA P, et al. An overview on WO 3
based photocatalyst for environmental remediation[J]. Journal of
Environmental Chemical Engineering, 2021, 9(1): 105018.
[8] CONG S, TIAN Y Y, LI Q W, et al. Single-crystalline tungsten oxide
quantum dots for fast pseudocapacitor and electrochromic
applications[J]. Advanced Materials, 2014, 26(25): 4260-4267.
[9] KALANTAR-ZADEH K, VIJAYARAGHAVAN A, HAM M H, et al.
Synthesis of atomically thin WO 3 sheets from hydrated tungsten
trioxide[J]. Chemistry of Materials, 2010, 22(19): 5660-5666.
[10] TACCA A, MEDA L, MARRA G, et al. Photoanodes based on
nanostructured WO 3 for water splitting[J]. ChemPhysChem, 2012,
13(12): 3025-3034.
图 8 WO 3 /ZnWO 4 复合薄膜的光电催化原理图 [11] QIN D D, TAO C L, FRIESEN S A, et al. Dense layers of vertically
Fig. 8 Schematic diagram of photoelectrocatalysis of oriented WO 3 crystals as anodes for photoelectrochemical water
WO 3 /ZnWO 4 composite film oxidation[J]. Chemical Communications, 2012, 48(5): 729-731.
[12] HORPRATHUM M, SRICHAIYAPERK T, SAMRANSUKSAMER
3 结论 B, et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO 3
nanorods prepared by glancing-angle dc magnetron sputtering[J].
ACS Applied Materials & Interfaces, 2014, 6(24): 22051-22060.
(1)XRD 图谱分析、SEM 观测都表明不同水热
[13] ZHOU J C, LIN S W, CHEN Y J, et al. Facile morphology control of
反应时长的 ZnWO 4 均匀地生长在 WO 3 纳米薄膜上。 WO 3 nanostructure arrays with enhanced photoelectrochemical
performance[J]. Applied Surface Science, 2017, 403: 274-281.
(2)相较于单一 WO 3 纳米薄膜,WO 3 /ZnWO 4
[14] YONG S M, NIKOLAY T, AHN B T, et al. One-dimensional WO 3
复合薄膜的构建扩展了其对太阳光的吸收范围,促 nanorods as photoelectrodes for dye-sensitized solar cells[J]. Journal
进电子-空穴对的产生,而 WO 3 /ZnWO 4 复合薄膜形 of Alloys and Compounds, 2013, 547: 113-117.
[15] NG C Y, RAZAK K A, LOCKMAN Z. WO 3 nanorods prepared by
成的异质结结构在利用模拟太阳光照射和施加电压 low-temperature seeded growth hydrothermal reaction[J]. Journal of
的 条件下又 使电子空 穴不易复 合,进而 使 Alloys and Compounds, 2014, 588: 585-591.
[16] QIN Y X, LIU C Y, LIU M, et al. Nanowire (nanorod) arrays-
WO 3 /ZnWO 4 复合薄膜的光电流特性和光电催化活 constructed tungsten oxide hierarchical structure and its unique NO 2-
性均优于纯 WO 3 纳米薄膜。 sensing performances[J]. Journal of Alloys and Compounds, 2014,
615: 616-623.
(3)水热反应时长为 3 h 的 WO 3 /ZnWO 4 复合
[17] ZHAN F Q, LI J, LI W Z, et al. In situ formation of CuWO 4/WO 3
薄膜样品具有最佳的光电化学性能。在电压为 1.6 V heterojunction plates array films with enhanced photoelectrochemical
properties[J]. International Journal of Hydrogen Energy, 2015,
时,WO 3 /ZnWO 4 -3h 复合薄膜的光电流密度达到
40(20): 6512-6520.
2
2.49 mA/cm 。光电催化降解亚甲基蓝 210 min 时降解 (下转第 203 页)