Page 221 - 《精细化工》2022年第1期
P. 221
第 1 期 熊利军,等: 耐高温清洁压裂液的制备及性能评价 ·211·
[11] MAO J C, YANG X J, WANG D L, et al. A novel gemini viscoelastic 10998-11004.
surfactant (VES) for fracturing fluids with good temperature [16] ISRAELACHVILI J N, MITCHELL D J, NINHAM B W. Theory of
stability[J]. RSC Advances, 2016, 6(91): 88426-88432. self-assembly of hydrocarbon amphiphiles into micelles and bilayers[J].
[12] MA X P, ZHU Z X, DAI L Y, et al. Introducing hydroxyl into Journal of the Chemical Society, Faraday Transactions 2, 1976, 72:
cationic surfactants as viscoelastic surfactant fracturing fluid with 1525-1568.
high temperature resistance[J]. Russian Journal of Applied Chemistry, [17] LU H S, WANG L, HUANG Z Y. Unusual pH-responsive fluid based
89(12): 2016-2026. on a simple tertiary amine surfactant: The formation of vesicles and
[13] JOCHER C, PAPE T, HAHN F E, et al. Cobalt complexation with wormlike micelles[J]. RSC Advances, 2014, 4(93): 51519-51527.
unsymmetrical tripodal ligands[J]. Zeitschrift Fur Naturforschung [18] JIANG Q H (蒋其辉), JIANG G C (蒋官澄), LU Y J (卢拥军), et al.
Section B-A Journal of Chemical Sciences, 2005, 60(6): 667-672. A high-temperature shear-resistant supramolecular associative weak
[14] LU H S, XUE M, WANG B G, et al. pH-regulated surface property gel cleaning fracturing fluid system[J]. Drilling Fluid & Completion
and pH-reversible micelle transition of a tertiary amine-based gemini Fluid (钻井液与完井液), 2016, 33(6): 106-110.
surfactant in aqueous solution[J]. Soft Matter, 2015, 11(47): 9135-9143. [19] PEI X M, YOU Y, ZHAO J X, et al. Adsorption and aggregation of
[15] KALUR G C, FROUNFELKER B D, CIPRIANO B H, et al. 2-hydroxyl-propanediyl-α,ω-bis(dimethyl dodecyl ammonium bromide)
Viscosity increases with temperature in cationic surfactant solutions in aqueous solution: Effect of intermolecular hydrogen-bonding[J].
due to the growth of wormlike micelles[J]. Langmuir, 2005, 21: Journal of Colloid and Interface Science, 2010, 351(2): 457-465.
(上接第 149 页) Journal of Henan University of Technology (河南工业大学学报),
[14] HAYDEN D, IMHOF A, VELIKOV K. Biobased nanoparticles for 2016, 37(2): 117-122.
broadband UV protection with photo stabilized UV filters[J]. ACS [21] MATSUSAKI M, HIWATARI K, HIGASHI M, et al. Stably-
Applied Materials & Interfaces, 2016, 8(48): 32-55. dispersed and surface-functional bionanoparticles prepared by
[15] DENG Y, EDIRIWICKREMA A, YANG F, et al. A sunblock based self-assembling amphipathic polymers of hydrophilic poly
on bioadhesive nanoparticles[J]. Nature Materials, 2015, 14(12): (γ-glutamic acid) bearing hydrophobic amino acids[J]. Chemistry
1278-1285. Letters, 2004, 33(4): 398-399.
[16] LI L Y, RAGHUPATHI K, SONG C F, et al. Self-assembly of [22] XU H L, FAN Z L, ZHUGE D L, et al. Therapeutic supermolecular
random copolymers[J]. Chemical Communications, 2014, 50: micelles of vitamin E succinate-grafted epsilon-polylysine as
13417-13432. potential carriers for curcumin: Enhancing tumour penetration and
[17] XU H L, YAO Q, CAI C F, et al. Amphiphilic poly(amino acid)based improving therapeutic effect on glioma[J]. Colloids and Surfaces B
micelles applied to drug delivery: The in vitro and in vivo challenges Biointerfaces, 2017, 158: 295-307.
and the corresponding potential strategies[J]. Journal of Controlled [23] RAN H Y (冉海燕), ZHU Y (朱叶), GU Y (顾瑶), et al. Preparation
Release, 2015, 199: 84-97. and properties of quaternized chitosan/nano-zinc oxide hybrid
[18] GENG X (耿旭), LIN B (林波) XIE Z X (谢振兴), et al. colloidal particles[J]. Journal of Functional Polymers (功能高分子学
Poly(glutamic acid) derivatives and their application in biomedical 报), 2020, 33(4): 390-398.
fields[J]. Chinese Bulletin of Life Sciences (生命科学), 2017, 29(2): [24] COZZI A, PERUGINI P, ARSIQUAUD S. Comparative behavior
160-163. between sunscreens based on free or encapsulated UV filters in term
[19] SHU X L (疏秀林), SHI Q S (施庆珊), CHEN Y B (陈仪本), et al. of skin penetration, retention and photo-stability[J]. European Journal
Application of gamma-poly glutamic acid and its derivatives in of Pharmaceutical Sciences, 2018, 121: 309-318.
biomedical field[J]. Chinese Journal of Tissue Engineering Research [25] FOTAKIS G, TIMBRELL J. In vitro cytotoxicity assays: Comparison
(中国组织工程研究), 2016, 16(16): 3009-3012. of LDH, neutral red, MTT and protein assay in hepatoma cell lines
[20] WANG W G (王卫国), WANG W (王卫), ZHAO Y L (赵永亮), following exposure to cadmium chloride[J]. Toxicology Letters,
et al. Research and application progress of γ-polyglutamic acid[J]. 2006, 160(2): 171-177.
(上接第 170 页) MoS 2/Co 9S 8/Ni 3S 2/Ni as a highly efficient electrocatalyst for over- all
[32] GUO Y N, TANG J, HENZIE J, et al. Mesoporousiron-doped water splitting in a wide pH range[J]. Journal of American Chemical
MoS 2/CoMo 2S 4 heterostructures through organic-metal cooperative Society, 2019, 141: 10417-10430.
interactions on spherical micelles for electrochemical water splitting[J]. [36] GHAHREMANINEZHAD A, DIXON D G, ASSENLIN E.
ACS Nano, 2020, 14(4): 4141-4152. Electrochemical and XPS analysis of chalcopyrite (CuFeS 2) dissolution
[33] LI W Q, LI Y H, WANG H G, et al. Co 9S 8-porous carbon spheres as in sulfuri acid solution[J]. Electrochimica Acta, 2013, 87: 97-112.
bifunctional electrocatalysts with high activity and stability for [37] WU Z X, GUO J P, WANG J. Hierarchically porous electrocatalyst
oxygen reduction and evolution reactions[J]. Electrochimica Acta, with vertically aligned defect-rich CoMoS nanosheets for the
2018, 265: 32-40. hydrogen evolution reaction in an alkaline medium[J]. ACS Applied
[34] LI Z X (李志学), REN T Q (任铁强), GENG Z X (耿忠兴), et al. Materials & Interfaces, 2017, 9: 5288-5294.
Preparation and electrocatalytic performance of flake Co 9S 8/ZnS/C [38] SUN Y F, GAO S, LEI F C, et al. Atomically-thin non-layered cobalt
composites for oxygen evolution reduction[J]. Chinese Journal oxide porous sheets for highly efficient oxygen-evolving
Inorganic Chemistry (无机化学学报), 2019, 35(12): 2318-2322. electrocatalysts[J]. Chemical Science, 2014, 5: 3976-3982.
[35] YNAG Y, YAO H Q, YU Z H, et al. Hierarchical nanoassembly of