Page 89 - 《精细化工》2022年第1期
P. 89
第 1 期 高 睿,等: 空心纳米 Ni@SiO 2 复合材料的制备及其催化性能 ·79·
Brij-58 催化对硝基苯酚还原具有良好的活性。由于 Energy Reviews, 2018, 1(3): 324-387.
[6] JIAO M L, LIU K L, SHI Z Q, et al. SiO 2/carbon composite
对硝基苯酚 NaBH 4 还原得到的对氨基苯酚钠在溶液 microspheres with hollow core-shell structure as a high-stability
electrode for lithium-ion batteries[J]. ChemElectroChem, 2017, 4(3):
中极易被氧化。因此,产物分离时首先采取酸化处 542-549.
理,将酚钠转化为酚再进行乙酸乙酯萃取、旋转蒸 [7] HUANG Y X, XIE M, WANG Z H, et al. A chemical precipitation
method preparing hollow-core-shell hetero structures based on the
发除去溶剂后得到固体产物,但酸化处理时氨基也 Prussian blue analogs as cathode for sodium-ion batteries[J]. Small,
2018, 14(28): 1801246.
被质子化,使产物在水中溶解度大、萃取损失大, [8] CHENG C, ZHANG X Y, WEI C Z, et al. Mesoporous hollow
最终分离收率为 34%。 ZnCo 2S 4 core-shell nanospheres for high performance supercapacitors[J].
Ceramics International, 2018, 44(14): 17464-17472.
[9] PARK H Y, PARK J H, KIM P, et al. Hollow PdCu 2@Pt core@shell
nanoparticles with ordered intermetallic cores as efficient and durable
oxygen reduction reaction electrocatalysts[J]. Applied Catalysis B:
Environmental, 2018, 225: 84-90.
[10] LIU T, ZHANG L Y, YOU W, et al. Core-shell nitrogen-doped
carbon hollow spheres/Co 3O 4 nanosheets as advanced electrode for
high-performance supercapacitor[J]. Small, 2018, 14(12): 1702407.
[11] LIU P B, GAO S, WANG Y, et al. Core-shell CoNi@graphitic carbon
decorated on B, N-codoped hollow carbon polyhedrons toward
lightweight and high-efficiency microwave attenuation[J]. ACS
Applied Materials & Interfaces, 2019, 11(28): 25624-25635.
[12] YE J, VAN DE BROEK B, DE PALMA R, et al. Surface morphology
changes on silica-coated gold colloids[J]. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 2008, 322(1/2/3): 225-233.
[13] SONMEZ M, GEORGESCU M, ALEXANDRESCU L, et al.
Synthesis and applications of Fe 3O 4/SiO 2 core-shell materials[J].
图 10 空心纳米 Ni@SiO 2 -Brij-58 催化对硝基苯酚还原的 Current Pharmaceutical Design, 2015, 21(37): 5324-5335.
[14] LISMONT M, PÁEZ C A, DREESEN L. A one-step short-time
UV-Vis 吸收光谱 synthesis of Ag@SiO 2 core-shell nanoparticles[J]. Journal of Colloid
Fig. 10 UV-Vis adsorption spectra of р-nitrophenol reduction and Interface Science, 2015, 447: 40-49.
catalyzed by hollow nano Ni@SiO 2 -Brij-58 [15] ZHAO Y, LI H, LI H X. NiCo@SiO 2 core-shell catalyst with high
activity and long lifetime for CO 2 conversion through DRM
reaction[J]. Nano Energy, 2018, 45: 101-108.
[16] WANG B, ZHU X Y, LI S H, et al. Ag@SiO 2 core-shell nanoparticles
3 结论 embedded in a TiO 2 mesoporous layer substantially improve the
performance of perovskite solar cells[J]. Nanomaterials, 2018, 8(9): 701.
[17] GHOSH CHAUDHURI R, PARIA S. Core/shell nanoparticles:
(1)反向微乳液体系中,以不同结构的表面活 Classes, properties, synthesis mechanisms, characterization, and
性剂为模板剂得到不同结构的空心纳米 Ni@SiO 2 复 applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433.
[18] JUN Y, CHOI J, CHEON J. Heterostructured magnetic nanoparticles:
合材料。其中,使用 Brij-58 为模板得到空心球形 Their versatility and high performance capabilities[J]. Chemical
Communications, 2007, (12): 1203-1214.
Ni@SiO 2 ,以聚醚 L44、聚醚 L64、AEO-7、NP-7 [19] NIEMEYER C M. Nanoparticles, proteins, and nucleic acids:
和曲拉通 X-100 为模板剂得到空心管状 Ni@SiO 2 。 Biotechnology meets materials science[J]. Angewandte Chemie In-
ternational Edition, 2001, 40(22): 4128-4158.
当以 HLB 值过小的聚醚 L61 和聚醚 L62 为模板剂 [20] MAZALEYRAT F, AMMAR M, LOBUE M, et al. Silica coated
nanoparticles: Synthesis, magnetic properties and spin structure[J].
时无法得到 Ni@SiO 2 复合材料。此外,空心纳米 Journal of Alloys and Compounds, 2009, 483(1/2): 473-478.
Ni@SiO 2 -Brij-58 催化 NaBH 4 还原对硝基苯酚显示 [21] LEE J, LEE Y, YOUN J K, et al. Simple synthesis of functionalized
superparamagnetic magnetite/silica core/shell nanoparticles and their
出良好活性,常温下转化率高达 97.6%。 application as magnetically separable high-performance biocatalysts[J].
Small, 2008, 4(1): 143-152.
(2)本研究对空心纳米 Ni@SiO 2 结构形成的机 [22] KIM S, LEE S, JUNG W C. Sintering resistance of Pt@SiO 2 core-
理给出了合理的解释。体系中高浓度的 Brij-58 和水 shell catalyst[J]. ChemCatChem, 2019, 11(18): 4653-4659.
2+
合肼与 Ni 形成的络合物赋予反胶束界面膜足够的 [23] ROTO R, YUSRAN Y, KUNCAKA A. Magnetic adsorbent of
Fe 3O 4@SiO 2 core-shell nanoparticles modified with thiol group for
chloroauric ion adsorption[J]. Applied Surface Science, 2016, 377:
强度,使 TEOS 水解时形成空心结构 SiO 2 包覆镍, 30-36.
产物经过分离、干燥、焙烧、还原,得到空心纳米 [24] EASTOE J, HOLLAMBY M J, HUDSON L. Recent advances in
nanoparticle synthesis with reversed micelles[J]. Advances in Colloid
Ni@SiO 2-Brij-58 复合材料。 and Interface Science, 2006, 128: 5-15.
[25] DOKER O, BAYRAKTAR E, MEHMETOGLU U, et al. Production
参考文献: of iron-cobalt compound nanoparticles using reverse micellar
system[J]. Reviews on Advanced Materials Science, 2003, 5: 498-500.
[1] GAWANDE M B, GOSWAMI A, ASEFA T, et al. Core-shell [26] GUO J X (郭继香), WU Z L (吴肇亮), LI M Y (李明远), et al.
nanoparticles: Synthesis and applications in catalysis and electroc- Effect of interfacial shear viscosity of crude oil on emulsion
atalysis[J]. Chemical Society Reviews, 2015, 44(21): 7540-7590. stability[J]. Fine Chemicals (精细化工), 2003, 20(11): 660-663.
[2] LU W J, GUO X T, LUO Y Q, et al. Core-shell materials for advanced [27] BOURREL M, SCHECHTER R S. Microemulsions and related
batteries[J]. Chemical Engineering Journal, 2019, 355: 208-237. systems: Formulation, solvency, and physical properties[M]. Surfactant
[3] LI J F, ZHANG Y J, DING S Y, et al. Core-shell nanoparticle- Science Series. Vol.30. New York: Marcel Dekker Press.
enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(7): [28] CHOI J Y, LEE Y K, YOON S M, et al. A chemical route to large-
5002-5069. scale preparation of spherical and monodisperse Ni powders[J].
[4] FENG H P, TANG L, ZENG G M, et al. Core-shell nanomaterials: Journal of the American Ceramic Society, 2005, 88(11): 3020-3023.
Applications in energy storage and conversion[J]. Advances in [29] SONG G L (宋官龙), ZHANG R K (张瑞凯), HUANG Z J (黄子
Colloid and Interface Science, 2019, 267: 26-46. 健), et al. Preparation and application of porous carbon-supported
[5] WANG R F, WANG H, LUO F, et al. Core-shell-structured low- Cu 2O/Cu dual-phase catalyst[J], Fine Chemicals (精细化工), 2018,
platinum electrocatalysts for fuel cell applications[J]. Electrochemical 35(6): 982-986.