Page 89 - 《精细化工》2022年第1期
P. 89

第 1 期                   高   睿,等:  空心纳米 Ni@SiO 2 复合材料的制备及其催化性能                             ·79·


            Brij-58 催化对硝基苯酚还原具有良好的活性。由于                            Energy Reviews, 2018, 1(3): 324-387.
                                                               [6]   JIAO M L, LIU K L, SHI Z Q,  et al. SiO 2/carbon composite
            对硝基苯酚 NaBH 4 还原得到的对氨基苯酚钠在溶液                            microspheres with hollow core-shell structure as a high-stability
                                                                   electrode for lithium-ion batteries[J]. ChemElectroChem, 2017, 4(3):
            中极易被氧化。因此,产物分离时首先采取酸化处                                 542-549.
            理,将酚钠转化为酚再进行乙酸乙酯萃取、旋转蒸                             [7]   HUANG Y X, XIE M, WANG Z H, et al. A chemical precipitation
                                                                   method preparing  hollow-core-shell  hetero structures based on the
            发除去溶剂后得到固体产物,但酸化处理时氨基也                                 Prussian blue analogs as cathode for sodium-ion batteries[J]. Small,
                                                                   2018, 14(28): 1801246.
            被质子化,使产物在水中溶解度大、萃取损失大,                             [8]   CHENG C, ZHANG  X  Y, WEI C Z,  et al. Mesoporous hollow
            最终分离收率为 34%。                                           ZnCo 2S 4 core-shell nanospheres for high performance supercapacitors[J].
                                                                   Ceramics International, 2018, 44(14): 17464-17472.
                                                               [9]   PARK H Y, PARK J H, KIM P, et al. Hollow PdCu 2@Pt core@shell
                                                                   nanoparticles with ordered intermetallic cores as efficient and durable
                                                                   oxygen  reduction  reaction electrocatalysts[J]. Applied Catalysis  B:
                                                                   Environmental, 2018, 225: 84-90.
                                                               [10]  LIU  T, ZHANG  L Y, YOU  W,  et al. Core-shell nitrogen-doped
                                                                   carbon hollow spheres/Co 3O 4 nanosheets as advanced electrode for
                                                                   high-performance supercapacitor[J]. Small, 2018, 14(12): 1702407.
                                                               [11]  LIU P B, GAO S, WANG Y, et al. Core-shell CoNi@graphitic carbon
                                                                   decorated on B,  N-codoped hollow carbon polyhedrons toward
                                                                   lightweight and high-efficiency microwave attenuation[J]. ACS
                                                                   Applied Materials & Interfaces, 2019, 11(28): 25624-25635.
                                                               [12]  YE J, VAN DE BROEK B, DE PALMA R, et al. Surface morphology
                                                                   changes on silica-coated gold colloids[J]. Colloids and Surfaces A:
                                                                   Physicochemical and Engineering Aspects, 2008, 322(1/2/3): 225-233.
                                                               [13]  SONMEZ M, GEORGESCU M,  ALEXANDRESCU  L,  et al.

                                                                   Synthesis and applications  of  Fe 3O 4/SiO 2 core-shell materials[J].
            图 10   空心纳米 Ni@SiO 2 -Brij-58 催化对硝基苯酚还原的               Current Pharmaceutical Design, 2015, 21(37): 5324-5335.
                                                               [14]  LISMONT M, PÁEZ C A, DREESEN L.  A one-step short-time
                  UV-Vis 吸收光谱                                      synthesis of Ag@SiO 2 core-shell nanoparticles[J]. Journal of Colloid
            Fig. 10    UV-Vis adsorption spectra of р-nitrophenol reduction   and Interface Science, 2015, 447: 40-49.
                    catalyzed by hollow nano Ni@SiO 2 -Brij-58   [15]  ZHAO Y, LI H, LI H X. NiCo@SiO 2 core-shell catalyst with high
                                                                   activity and long lifetime for CO 2 conversion through DRM
                                                                   reaction[J]. Nano Energy, 2018, 45: 101-108.
                                                               [16]  WANG B, ZHU X Y, LI S H, et al. Ag@SiO 2 core-shell nanoparticles
            3   结论                                                 embedded in a TiO 2 mesoporous layer substantially improve the
                                                                   performance of perovskite solar cells[J]. Nanomaterials, 2018, 8(9): 701.
                                                               [17]  GHOSH CHAUDHURI R, PARIA S. Core/shell nanoparticles:
                (1)反向微乳液体系中,以不同结构的表面活                              Classes, properties, synthesis mechanisms, characterization, and
            性剂为模板剂得到不同结构的空心纳米 Ni@SiO 2 复                           applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433.
                                                               [18]  JUN Y, CHOI J, CHEON J. Heterostructured magnetic nanoparticles:
            合材料。其中,使用 Brij-58 为模板得到空心球形                            Their versatility and  high  performance capabilities[J]. Chemical
                                                                   Communications, 2007, (12): 1203-1214.
            Ni@SiO 2 ,以聚醚 L44、聚醚 L64、AEO-7、NP-7                [19]  NIEMEYER C M. Nanoparticles, proteins, and nucleic acids:
            和曲拉通 X-100 为模板剂得到空心管状 Ni@SiO 2 。                       Biotechnology meets materials science[J]. Angewandte Chemie In-
                                                                   ternational Edition, 2001, 40(22): 4128-4158.
            当以 HLB 值过小的聚醚 L61 和聚醚 L62 为模板剂                     [20]  MAZALEYRAT F, AMMAR  M,  LOBUE M,  et al. Silica coated
                                                                   nanoparticles: Synthesis, magnetic properties and  spin structure[J].
            时无法得到 Ni@SiO 2 复合材料。此外,空心纳米                            Journal of Alloys and Compounds, 2009, 483(1/2): 473-478.
            Ni@SiO 2 -Brij-58 催化 NaBH 4 还原对硝基苯酚显示              [21]  LEE J, LEE Y, YOUN J K, et al. Simple synthesis of functionalized
                                                                   superparamagnetic magnetite/silica core/shell nanoparticles and their
            出良好活性,常温下转化率高达 97.6%。                                  application as magnetically separable high-performance biocatalysts[J].
                                                                   Small, 2008, 4(1): 143-152.
                (2)本研究对空心纳米 Ni@SiO 2 结构形成的机                    [22]  KIM S, LEE S, JUNG W C. Sintering resistance of Pt@SiO 2 core-
            理给出了合理的解释。体系中高浓度的 Brij-58 和水                           shell catalyst[J]. ChemCatChem, 2019, 11(18): 4653-4659.
                      2+
            合肼与 Ni 形成的络合物赋予反胶束界面膜足够的                           [23]  ROTO R, YUSRAN Y, KUNCAKA A. Magnetic adsorbent of
                                                                   Fe 3O 4@SiO 2 core-shell nanoparticles modified with thiol group for
                                                                   chloroauric ion adsorption[J]. Applied Surface Science, 2016, 377:
            强度,使 TEOS 水解时形成空心结构 SiO 2 包覆镍,                         30-36.
            产物经过分离、干燥、焙烧、还原,得到空心纳米                             [24]  EASTOE J,  HOLLAMBY M J,  HUDSON L.  Recent advances in
                                                                   nanoparticle synthesis with reversed micelles[J]. Advances in Colloid
            Ni@SiO 2-Brij-58 复合材料。                                 and Interface Science, 2006, 128: 5-15.
                                                               [25]  DOKER O, BAYRAKTAR E, MEHMETOGLU U, et al. Production
            参考文献:                                                  of iron-cobalt compound  nanoparticles using reverse  micellar
                                                                   system[J]. Reviews on Advanced Materials Science, 2003, 5: 498-500.
            [1]   GAWANDE M B, GOSWAMI A,  ASEFA T,  et al. Core-shell   [26]  GUO J  X (郭继香), WU Z  L (吴肇亮), LI M  Y (李明远),  et al.
                 nanoparticles: Synthesis and applications in catalysis and electroc-  Effect of interfacial shear viscosity of crude oil on emulsion
                 atalysis[J]. Chemical Society Reviews, 2015, 44(21): 7540-7590.     stability[J]. Fine Chemicals (精细化工), 2003, 20(11): 660-663.
            [2]   LU W J, GUO X T, LUO Y Q, et al. Core-shell materials for advanced   [27]  BOURREL M, SCHECHTER R S.  Microemulsions and related
                 batteries[J]. Chemical Engineering Journal, 2019, 355: 208-237.   systems: Formulation, solvency, and physical properties[M]. Surfactant
            [3]   LI J F, ZHANG Y J, DING S  Y,  et al. Core-shell  nanoparticle-   Science Series. Vol.30. New York: Marcel Dekker Press.
                 enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(7):   [28]  CHOI J Y, LEE Y K, YOON S M, et al. A chemical route to large-
                 5002-5069.                                        scale preparation of spherical and monodisperse Ni powders[J].
            [4]   FENG H P, TANG L, ZENG G M, et al. Core-shell nanomaterials:   Journal of the American Ceramic Society, 2005, 88(11): 3020-3023.
                 Applications in energy storage and conversion[J]. Advances in   [29]  SONG G L (宋官龙), ZHANG R K (张瑞凯), HUANG Z J (黄子
                 Colloid and Interface Science, 2019, 267: 26-46.     健),  et al. Preparation and application of porous carbon-supported
            [5]   WANG R F,  WANG H, LUO F,  et al. Core-shell-structured low-   Cu 2O/Cu dual-phase catalyst[J], Fine Chemicals (精细化工), 2018,
                 platinum electrocatalysts for fuel cell applications[J]. Electrochemical   35(6): 982-986.
   84   85   86   87   88   89   90   91   92   93   94