Page 186 - 《精细化工》2022年第11期
P. 186
·2336· 精细化工 FINE CHEMICALS 第 39 卷
[10] ZHANG X F, SONG L, CHEN X X, et al. Zirconium ion modified 6195-6214.
melamine sponge for oil and organic solvent cleanup[J]. Journal of [21] OKESOLA B O, WU Y H, DERKUS B, et al. Supramolecular
Colloid and Interface Science, 2020, 566: 242-247. self-assembly to control structural and biological properties of
[11] STEJSKAL J, SAPURINA I, VILCAKOVA J, et al. One-pot preparation multicomponent hydrogels[J]. Chemistry of Materials, 2019, 31(19):
of conducting melamine/polypyrrole/magnetite ferrosponge[J]. ACS 7883-7897.
Applied Polymer Materials, 2021, 3(2): 1107-1115. [22] DENG S J, WANG R, XU H J, et al. Hybrid hydrogels of
[12] HICKMAN R, WALLKER E, CHOWDHURY S. TiO 2-PDMS hyperbranched poly(ether amine)s (hPEAs) for selective adsorption
composite sponge for adsorption and solar mediated photodegradation of guest molecules and separation of dyes[J]. Journal of Materials
of dye pollutants[J]. Journal of Water Process Engineering, 2018, 24: Chemistry, 2012, 22(19): 10055-10061.
74-82. [23] CHENG N, HU Q Z, GUO Y X, et al. Efficient and selective
[13] MALLAKPOUR S, BEHRANVANDE V. Polyurethane sponge modified removal of dyes using imidazolium-based supramolecular gels[J].
by alginate and activated carbon with abilities of oil absorption, and ACS Applied Materials and Interfaces, 2015, 7(19): 10258-10265.
selective cationic and anionic dyes clean-up[J]. Journal of Cleaner [24] HAN X Y, LIU J H, ZHAO C Y, et al. Two-component gelator
Production, 2021, 312: 127513. isomers with different combination of amine and acid: Helical/non-
[14] ZHOU J, ZHANG Y, JIA G W, et al. A multifunctional sponge helical morphology and selective adsorption of dyes[J]. Journal of
incorporated with TiO 2 and graphene oxide as a reusable absorbent Colloid and Interface Science, 2018, 525: 177-186.
for oil/water separation and dye absorption[J]. New Journal of [25] WAN Z T, LI D, LIAO Y L, et al. Bifunctional MoS 2 coated
Chemistry, 2021, 45(10): 4835-4842. melamine-formaldehyde sponges for efficient oil-water separation
[15] XU X Q, TIAN M W, QU L J, et al. Graphene oxide/chitosan/ and water-soluble dye removal[J]. Applied Materials Today, 2017, 9:
poly-vinyl-alcohol composite sponge as effective adsorbent for 551-559.
dyes[J]. Water Environment Research, 2017, 89(6): 555-563. [26] YAN R Y (颜汝玉), ZHANG B H (张宝浩), JIA J (贾婧), et al. Tow-
[16] HE M Q (何梦奇), XU J H (徐继红), DUAN X Y (段贤扬), et al. component gelator loaded in melamine sponge for dyes adsorption[J].
Preparation of GO/GA-g-PAMPS composite hydrogels and its Chemical Industry and Engineering (化学工业与工程), 2022, 39(1):
adsorption properties for cationic dyes[J]. Fine Chemicals (精细化 83-90.
工), 2020, 37(5): 924-932. [27] ZHANG B H, CHEN S P, LUO H, et al. Porous amorphous powder
[17] GUAN X D, FAN K Q, GAO T Y, et al. A novel multi-stimuli form phase-selective organogelator for rapid recovery of leaked
responsive gelator based on D-gluconic acetal and its potential aromatics and spilled oils[J]. Journal of Hazardous Materials, 2020,
applications[J]. Chemical Communications, 2016, 52(5): 962-965. 384: 121460.
[18] MONDAL S, DAS S, NANDI A K. A review on recent advances in [28] YU G C, YAN X Z, HAN C Y, et al. Characterization of supramolecular
polymer and peptide hydrogels[J]. Soft Matter, 2020, 16(6): 1404-1454. gels[J]. Chemical Society Reviews, 2013, 42(16): 6697-6722.
[19] AMABILINO D B, SMITH D K, STEED J W. Supramolecular [29] ZHU Q Y, MOGGRIDGE G D, D'AGOSTINO C. Adsorption of
Materials[J]. Chemical Society Reviews, 2017, 46(9): 2404-2420. pyridine from aqueous solutions by polymeric adsorbents MN 200
[20] APPEL E A, BARRIO J D, LOH X J, et al. Supramolecular and MN 500. Part 2: Kinetics and diffusion analysis[J]. Chemical
polymeric hydrogels[J]. Chemical Society Reviews, 2012, 41(18): Engineering Journal, 2016, 306: 1223-1233.
(上接第 2296 页) Genetics, 2005, 53: 215-230.
[6] KOO H, HUH M, SUN I, et al. In vivo targeted delivery of [16] AGARWAL S, ZHANG Y, MAJI S, et al. PDMAEMA based gene
nanoparticles for theranosis[J]. Accounts of Chemical Research, delivery materials[J]. Materials Today, 2012, 15: 388-393.
2011, 44: 1018-1028. [17] AKINC A, LYNN D, ANDERSON D, et al. Parallel synthesis and
[7] TANG W Q (唐文强), GAO Y R (高艳蓉), LIU B (刘斌), et al. biophysical characterization of a degradable polymer library for gene
Research progress on smart responsive nanocarrier systems for drug delivery[J]. Journal of the American Chemical Society, 2003, 125:
delivery[J]. Fine Chemicals (精细化工), 2020, 37(5): 883-892. 5316-5323.
[8] CHEN D G (陈道鸽), XIONG X Y (熊向源), GONG Y C (龚妍春), [18] SCHALLON A, JEROME V, WALTHER A, et al. Performance of
et al. Research and application of polymeric nanoparticles containing three PDMAEMA-based polycation architectures as gene delivery
pluronic in drug release system: A Review[J]. Materials Reports (材 agents in comparison to linear and branched PEI[J]. Reactive and
料导报), 2019, 33(3): 517-521. Functional Polymers, 2010, 70: 1-10.
[9] ZHENG M B, YUE C X, MA Y F, et al. Single-step assembly of [19] DUBRUEL P, CHRISTIAENS B, VANLOO B, et al. Physicochemical
DOX/ICG loaded lipid-polymer nanoparticles for highly effective and biological evaluation of cationic polymethacrylates as vectors for
chemo-photothermal combination therapy[J]. ACS Nano, 2013, 7: gene delivery[J]. European Journal of Pharmaceutical Sciences,
2056-2067. 2003, 18: 211-220.
[10] PANNEERSELVAM K, LYNGE M, RIBER C, et al. Phospholipid- [20] JONES R, PONIRIS M, WILSON M. pDMAEMA is internalised by
polymer amphiphile hybrid assemblies and their interaction with endocytosis but does not physically disrupt endosomes[J]. Journal of
macrophages[J]. Biomicrofluidics, 2015, 9: 052610. Controlled Release, 2004, 96: 379-391.
[11] ZHANG L H, ZHU D W, DONG X, et al. Folate-modified lipid- [21] HE L H (何丽华), MIN J (闵洁), ZHENG R (郑荣), et al. Drug
polymer hybrid nanoparticles for targeted paclitaxel delivery[J]. carrier based on pH-sensitive dextran hydrogel microspheres[J]. Fine
International Journal of Nanomedicine, 2015, 10: 2101. Chemicals (精细化工), 2020, 37(3): 494-499.
[12] TANG Z X (唐祝兴), ZHAO X (赵鑫), TIAN Y (田颖), et al. Study [22] ZHANG X N (张旭男). Preparation of pH-sensitive antitumor
on metal organic framework material of Fe 3O 4@ZIF-8 as a drug liposomes and their controllable and sustained drug releases[D].
carrier[J]. Fine Chemicals (精细化工), 2018, 35(5): 758-763. Harbin: Harbin Institute of Technology (哈尔滨工业大学), 2018.
[13] WU G Y, WU C H. Receptor-mediated in vitro gene transformation [23] YUAN M Y, YANG Y R, LI Y, et al. Mucin-like domain of mucosal
by a soluble DNA carrier system[J]. Journal of Biological Chemistry, addressin cell adhesion molecule-1 facilitates integrin α4β7-mediated
2017, 262: 4429-4432. cell adhesion through electrostatic repulsion[J]. Frontiers in Cell and
[14] LIU G, MOLAS M, GROSSMANN G, et al. Biological properties of Developmental Biology, 2020, 8: 603148.
poly-L-lysine-DNA complexes generated by cooperative binding of the [24] GAO X J (高秀娟). Preparation and lung-targeting evaluation of
polycation[J]. Journal of Biological Chemistry, 2001, 276: 34379-34387. PLGA microspheres loaded with anticancer yuanhuacine[D]. Dalian:
[15] DEMENEIX B, BEHR J. Polyethylenimine (PEI)[J]. Advances in Dalian University of Technology (大连理工大学), 2007.