Page 83 - 《精细化工》2022年第11期
P. 83

第 11 期                         张素风,等:  纤维素基包装阻隔膜的研究进展                                   ·2233·


                 Crops and Products, 2021, 160: 113116-113127.     organic-inorganic hybrid perovskite layer for high-performance solar
            [15]  JUN A, TOSHIYUKI K, NAOYA K, et al. A preliminary study for   cells[J]. Chemical Engineering Journal, 2022, 437: 135458-135466.
                 fiber spinning of mixed solutions of polyrotaxane and cellulose in a   [34]  YANG H C, HOU J W, CHEN V,  et al. Surface and interface
                 dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system[J].   engineering for organic-inorganic composite membranes[J]. Journal
                 Polymer, 2006, 47(25): 8241-8246.                 of Materials Chemistry A, 2016, 4(25): 9716-9729.
            [16]  JIN H (靳宏), CUI S Q (崔世强), ZHANG Y M (张玉梅). Research   [35]  WANG  Y,  ZHANG L H, DENG  L L,  et al. Co-dissolution of
                 progress in the dissolution mechanism of cellulose in aqueous NMMO   cellulose and silk fibroin in levulinic acid-derived protic ionic liquids
                 solution [J]. Polymer Bulletin (高分子通报), 2006, 47(25): 8241-8246.   for composited membrane and fiber preparation[J]. Green Chemistry,
            [17]  ZHANG X  Y (张须友), ZHU P (朱平), ZHANG L (张林),  et al.   2021, 23(23): 9669-9682.
                 Rheological properties and solubility  of cellulose  cuprammonium   [36]  FU F Y, ZHANG  W L,  ZHANG  R  H,  et al. NaOH/urea solution
                 complex solution[J].  China Synthetic Fiber Industry (合成纤维工  spinning of cellulose hybrid fibers embedded with Ag nanoparticles:
                 业), 2012, 35(3): 28-30.                           Influence of stretching on structure and properties[J].  Cellulose,
            [18]  EL SEOUD O A, KOSTAG M, JEDVERT K, et al. Cellulose in ionic   2018, 25(12): 7211-7224.
                 liquids and alkaline solutions: Advances in the  mechanisms of   [37] SKWIERCZYŃSKA M, RUNOWSKI M, KULPIŃSKI P,  et al.
                 biopolymer dissolution and regeneration[J]. Polymers, 2019, 11(12):   Modification of cellulose fibers with inorganic luminescent nanoparticles
                 1917-1945.                                        based on lanthanide(Ⅲ) ions[J]. Carbohydrate Polymers, 2019, 206:
            [19]  CAI J, ZHANG L N, CHANG C Y, et al. Hydrogen-bond-induced   742-748.
                 inclusion complex in aqueous cellulose/LiOH/urea solution at low   [38]  REDDY J P, RAJULU A V, RHIM J W, et al. Mechanical, thermal,
                 temperature[J]. ChemPhysChem, 2007, 8(10): 1572-1579.   and water vapor barrier properties of regenerated cellulose/nano-SiO 2
            [20]  WANG L J (王立久), LIU Y (刘岩). Study on dissolution mechanism   composite films[J]. Cellulose, 2018, 25(12): 7153-7165.
                 of non-derivatized cellulose solvents and its development[J].   [39]  MARAKANA P G, DEY  A, SAINI B. Isolation  of nanocellulose
                 Shandong Chemical Instrudy (山东化工), 2016, 45(11): 55-58.   from lignocellulosic biomass: Synthesis, characterization, modification,
            [21]  KALE R D, GORADE V G. Potential application of medical cotton   and potential applications[J]. Journal of Environmental  Chemical
                 waste for self-reinforced composite[J]. International  Journal of   Engineering, 2021, 9(6):106606-106625.
                 Biological Macromolecules, 2018, 124: 25-33.   [40]  CIGDEM H  A, MOSQUERA G  L I, BI V,  et al. Pharmaceutical
            [22]  RUMI S S, LIYANAGE S, ABIDI N.  Conversion  of low-quality   applications of cellulose ethers and cellulose ether esters[J].
                 cotton to bioplastics[J]. Cellulose, 2021, 28(4): 2021-2038.   Biomacromolecules, 2018, 19(7): 2351-2376.
            [23]  GUO Y L, CAI L, GUO G, et al. Cellulose membranes from cellulose   [41]  ZHANG  C H,  YANG X D, LI Y,  et al. Multifunctional hybrid
                 CO 2-based reversible ionic liquid solutions[J].  ACS  Sustainable   composite films based on biodegradable cellulose nanofibers, aloe
                 Chemistry & Engineering, 2021, 9(35): 11847-11854.   juice, and carboxymethyl cellulose[J]. Cellulose, 2021, 28(8):
            [24]  XU Z, ZHOU Q W, WANG L X, et al. Transparent cellulose-based   4927-4941.
                 films prepared from used disposable paper cups via an ionic liquid[J].   [42]  THIVYA P, BHOSALE Y K,  ANANDAKUMAR S,  et al.
                 Polymers (Basel), 2021, 13(23): 4209-4222.        Development of active packaging film from sodium alginate/
            [25]  ZHU R N, LIU X, SONG P P, et al. An approach for reinforcement   carboxymethyl cellulose containing  shallot waste extracts for anti-
                 of paper with high strength and barrier properties  via  coating   browning of fresh-cut produce[J]. International Journal Biological
                 regenerated cellulose[J]. Carbohydrate Polymers, 2018, 200: 100-105.   Macromolecules, 2021, 188: 790-799.
            [26]  LI H B, MA Y J, HUANG Y G. Material innovation and mechanics   [43]  SIBEL T, OSMAN D. Preparation of active  antimicrobial  methyl
                 design for  substrates and encapsulation  of  flexible electronics:  A   cellulose/carvacrol/montmorillonite  nanocomposite  films  and
                 review[J]. Materials Horizons, 2021, 8(2): 383-400.   investigation of carvacrol release[J]. LWT-Food Science and
            [27]  MISSIO A L, MATTOS B D, FERREIRA D F, et al. Nanocellulose-   Technology, 2010, 44(2): 465-472.
                 tannin films: From trees to sustainable active packaging[J]. Journal   [44]  TABARI M. Investigation  of carboxymethyl cellulose (CMC) on
                 of Cleaner Production, 2018, 184: 143-151.        mechanical properties of cold water fish gelatin biodegradable edible
            [28]  ZHOU H M, TONG H, LU J, et al. Preparation of bio-based cellulose   films[J]. Foods, 2017, 6(6): 41-48.
                 acetate/chitosan composite film with oxygen and water resistant   [45]  YADOLLAH E, SEYED J P, SEYED H P,  et al. Development of
                 properties[J]. Carbohydrate Polymers, 2021, 270: 118381-118389.   antibacterial carboxymethyl cellulose-based nanobiocomposite films
            [29]  AZÊVEDO  LCD, ROVANI S, SANTOS J J,  et al. Study of   containing  various metallic nanoparticles for  food  packaging
                 renewable silica powder influence in the preparation  of bioplastics   applications[J]. Journal of Food Science, 2019, 84(9): 2537-2548.
                 from corn and  potato starch[J]. Journal  of  Polymers and the   [46]  SHAHBAZI M, AHMADI S J, SEIF A,  et al. Carboxymethyl
                 Environment, 2020, 29(3): 707-720.                cellulose film  modification through surface  photo-crosslinking and
            [30]  SAEDI S, SHOKRI M, KIM J T, et al. Semi-transparent regenerated   chemical crosslinking for food packaging applications[J]. Food
                 cellulose/ZnONP nanocomposite film as a potential antimicrobial   Hydrocolloids, 2016, 61: 378-389.
                 food packaging material[J]. Journal of Food Engineering, 2021, 307:   [47]  WANG M Y, JIA X X, LIU W S, et al. Water insoluble and flexible
                 110665-110678.                                    transparent film based on carboxymethyl cellulose[J]. Carbohydrate
            [31]  ZHANG Y R, ZHANG C Z, WANG Y X. Recent progress in cellulose-   Polymers, 2021, 255: 117353-117360.
                 based electrospun nanofibers as multifunctional materials[J]. Nanoscale   [48]  KLANGMUANG P, SOTHORNVIT R. Barrier properties, mechanical
                 Advances, 2021, 3(21): 6040-6047.                 properties and antimicrobial activity of hydroxypropyl methylcellulose-
            [32]  HAMILL J  C, SCHWARTZ J,  LOO Y L. Influence of solvent   based nanocomposite films incorporated with Thai essential oils[J].
                 coordination  on  hybrid organic-inorganic perovskite formation[J].   Food Hydrocolloids, 2016, 61: 609-616.
                 ACS Energy Letters, 2017, 3(1): 92-97.        [49]  LI P F, ZENG J S, WANG B,  et al. Waterborne fluorescent dual
            [33]  CAO X B, HAO L, LIU Z J, et al. All green solvent engineering of   anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted
   78   79   80   81   82   83   84   85   86   87   88