Page 83 - 《精细化工》2022年第11期
P. 83
第 11 期 张素风,等: 纤维素基包装阻隔膜的研究进展 ·2233·
Crops and Products, 2021, 160: 113116-113127. organic-inorganic hybrid perovskite layer for high-performance solar
[15] JUN A, TOSHIYUKI K, NAOYA K, et al. A preliminary study for cells[J]. Chemical Engineering Journal, 2022, 437: 135458-135466.
fiber spinning of mixed solutions of polyrotaxane and cellulose in a [34] YANG H C, HOU J W, CHEN V, et al. Surface and interface
dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system[J]. engineering for organic-inorganic composite membranes[J]. Journal
Polymer, 2006, 47(25): 8241-8246. of Materials Chemistry A, 2016, 4(25): 9716-9729.
[16] JIN H (靳宏), CUI S Q (崔世强), ZHANG Y M (张玉梅). Research [35] WANG Y, ZHANG L H, DENG L L, et al. Co-dissolution of
progress in the dissolution mechanism of cellulose in aqueous NMMO cellulose and silk fibroin in levulinic acid-derived protic ionic liquids
solution [J]. Polymer Bulletin (高分子通报), 2006, 47(25): 8241-8246. for composited membrane and fiber preparation[J]. Green Chemistry,
[17] ZHANG X Y (张须友), ZHU P (朱平), ZHANG L (张林), et al. 2021, 23(23): 9669-9682.
Rheological properties and solubility of cellulose cuprammonium [36] FU F Y, ZHANG W L, ZHANG R H, et al. NaOH/urea solution
complex solution[J]. China Synthetic Fiber Industry (合成纤维工 spinning of cellulose hybrid fibers embedded with Ag nanoparticles:
业), 2012, 35(3): 28-30. Influence of stretching on structure and properties[J]. Cellulose,
[18] EL SEOUD O A, KOSTAG M, JEDVERT K, et al. Cellulose in ionic 2018, 25(12): 7211-7224.
liquids and alkaline solutions: Advances in the mechanisms of [37] SKWIERCZYŃSKA M, RUNOWSKI M, KULPIŃSKI P, et al.
biopolymer dissolution and regeneration[J]. Polymers, 2019, 11(12): Modification of cellulose fibers with inorganic luminescent nanoparticles
1917-1945. based on lanthanide(Ⅲ) ions[J]. Carbohydrate Polymers, 2019, 206:
[19] CAI J, ZHANG L N, CHANG C Y, et al. Hydrogen-bond-induced 742-748.
inclusion complex in aqueous cellulose/LiOH/urea solution at low [38] REDDY J P, RAJULU A V, RHIM J W, et al. Mechanical, thermal,
temperature[J]. ChemPhysChem, 2007, 8(10): 1572-1579. and water vapor barrier properties of regenerated cellulose/nano-SiO 2
[20] WANG L J (王立久), LIU Y (刘岩). Study on dissolution mechanism composite films[J]. Cellulose, 2018, 25(12): 7153-7165.
of non-derivatized cellulose solvents and its development[J]. [39] MARAKANA P G, DEY A, SAINI B. Isolation of nanocellulose
Shandong Chemical Instrudy (山东化工), 2016, 45(11): 55-58. from lignocellulosic biomass: Synthesis, characterization, modification,
[21] KALE R D, GORADE V G. Potential application of medical cotton and potential applications[J]. Journal of Environmental Chemical
waste for self-reinforced composite[J]. International Journal of Engineering, 2021, 9(6):106606-106625.
Biological Macromolecules, 2018, 124: 25-33. [40] CIGDEM H A, MOSQUERA G L I, BI V, et al. Pharmaceutical
[22] RUMI S S, LIYANAGE S, ABIDI N. Conversion of low-quality applications of cellulose ethers and cellulose ether esters[J].
cotton to bioplastics[J]. Cellulose, 2021, 28(4): 2021-2038. Biomacromolecules, 2018, 19(7): 2351-2376.
[23] GUO Y L, CAI L, GUO G, et al. Cellulose membranes from cellulose [41] ZHANG C H, YANG X D, LI Y, et al. Multifunctional hybrid
CO 2-based reversible ionic liquid solutions[J]. ACS Sustainable composite films based on biodegradable cellulose nanofibers, aloe
Chemistry & Engineering, 2021, 9(35): 11847-11854. juice, and carboxymethyl cellulose[J]. Cellulose, 2021, 28(8):
[24] XU Z, ZHOU Q W, WANG L X, et al. Transparent cellulose-based 4927-4941.
films prepared from used disposable paper cups via an ionic liquid[J]. [42] THIVYA P, BHOSALE Y K, ANANDAKUMAR S, et al.
Polymers (Basel), 2021, 13(23): 4209-4222. Development of active packaging film from sodium alginate/
[25] ZHU R N, LIU X, SONG P P, et al. An approach for reinforcement carboxymethyl cellulose containing shallot waste extracts for anti-
of paper with high strength and barrier properties via coating browning of fresh-cut produce[J]. International Journal Biological
regenerated cellulose[J]. Carbohydrate Polymers, 2018, 200: 100-105. Macromolecules, 2021, 188: 790-799.
[26] LI H B, MA Y J, HUANG Y G. Material innovation and mechanics [43] SIBEL T, OSMAN D. Preparation of active antimicrobial methyl
design for substrates and encapsulation of flexible electronics: A cellulose/carvacrol/montmorillonite nanocomposite films and
review[J]. Materials Horizons, 2021, 8(2): 383-400. investigation of carvacrol release[J]. LWT-Food Science and
[27] MISSIO A L, MATTOS B D, FERREIRA D F, et al. Nanocellulose- Technology, 2010, 44(2): 465-472.
tannin films: From trees to sustainable active packaging[J]. Journal [44] TABARI M. Investigation of carboxymethyl cellulose (CMC) on
of Cleaner Production, 2018, 184: 143-151. mechanical properties of cold water fish gelatin biodegradable edible
[28] ZHOU H M, TONG H, LU J, et al. Preparation of bio-based cellulose films[J]. Foods, 2017, 6(6): 41-48.
acetate/chitosan composite film with oxygen and water resistant [45] YADOLLAH E, SEYED J P, SEYED H P, et al. Development of
properties[J]. Carbohydrate Polymers, 2021, 270: 118381-118389. antibacterial carboxymethyl cellulose-based nanobiocomposite films
[29] AZÊVEDO LCD, ROVANI S, SANTOS J J, et al. Study of containing various metallic nanoparticles for food packaging
renewable silica powder influence in the preparation of bioplastics applications[J]. Journal of Food Science, 2019, 84(9): 2537-2548.
from corn and potato starch[J]. Journal of Polymers and the [46] SHAHBAZI M, AHMADI S J, SEIF A, et al. Carboxymethyl
Environment, 2020, 29(3): 707-720. cellulose film modification through surface photo-crosslinking and
[30] SAEDI S, SHOKRI M, KIM J T, et al. Semi-transparent regenerated chemical crosslinking for food packaging applications[J]. Food
cellulose/ZnONP nanocomposite film as a potential antimicrobial Hydrocolloids, 2016, 61: 378-389.
food packaging material[J]. Journal of Food Engineering, 2021, 307: [47] WANG M Y, JIA X X, LIU W S, et al. Water insoluble and flexible
110665-110678. transparent film based on carboxymethyl cellulose[J]. Carbohydrate
[31] ZHANG Y R, ZHANG C Z, WANG Y X. Recent progress in cellulose- Polymers, 2021, 255: 117353-117360.
based electrospun nanofibers as multifunctional materials[J]. Nanoscale [48] KLANGMUANG P, SOTHORNVIT R. Barrier properties, mechanical
Advances, 2021, 3(21): 6040-6047. properties and antimicrobial activity of hydroxypropyl methylcellulose-
[32] HAMILL J C, SCHWARTZ J, LOO Y L. Influence of solvent based nanocomposite films incorporated with Thai essential oils[J].
coordination on hybrid organic-inorganic perovskite formation[J]. Food Hydrocolloids, 2016, 61: 609-616.
ACS Energy Letters, 2017, 3(1): 92-97. [49] LI P F, ZENG J S, WANG B, et al. Waterborne fluorescent dual
[33] CAO X B, HAO L, LIU Z J, et al. All green solvent engineering of anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted