Page 84 - 《精细化工》2022年第11期
P. 84

·2234·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 with dialdehyde nano-fibrillated cellulose[J]. Carbohydrate  Polymers,   [65]  SEBESTYÉN N, EMÍLIA C, DÁVID K, et al. Cellulose nanocrystal/
                 2020, 247: 116721-116732.                         amino-aldehyde biocomposite films[J]. Carbohydrate Polymers, 2018,
            [50]  WANG Y, ZHANG H, ZHANG H C, et al. Synergy coordination of   194: 51-60.
                                                 3+
                 cellulose-based dialdehyde and carboxyl with Fe  recoverable   [66]  GAN P G, SAM S T, ABDULLAH M F, et al. Water resistance and
                 conductive self-healing hydrogel for sensor[J]. Materials Science and   biodegradation properties of conventionally-heated and microwave-
                 Engineering: C, 2021, 125: 112094-112105.         cured cross-linked cellulose nanocrystal/chitosan composite films[J].
            [51]  KHOSHNEVISAN K, MALEKI H, SAMADIAN S, et al. Cellulose   Polymer Degradation and Stability, 2021, 188: 109563-109575.
                 acetate electrospun nanofibers for drug delivery systems: Applications   [67]  SHALOM B T, BELSEY  S, CHASNITSKY  M,  et al. Cellulose
                 and recent advances[J]. Carbohydrate Polymers, 2018, 198: 131-141.   nanocrystals and corn zein oxygen and water vapor barrier
            [52]  WEI W, ZHU Y, LI Q, et al. An Al 2O 3-cellulose acetate-coated textile   biocomposite films[J]. Nanomaterials, 2021, 11(1): 247-263.
                 for human body cooling[J]. Solar Energy Materials and Solar Cells,   [68]  TYAGI P,  LUCIA  L A, HUBBE M  A,  et al. Nanocellulose-based
                 2020, 211: 110525-110532.                         multilayer barrier  coatings for gas,  oil, and grease resistance[J].
            [53]  TEDESCHI G,  GUZMAN P S, PAUL U C,  et al. Thermoplastic   Carbohydrate Polymers, 2019, 206: 281-288.
                 cellulose acetate oleate films with high barrier properties and ductile   [69]  HE Y J, BOLUK Y, PAN J S, et al. Comparative study of CNC and
                 behaviour[J]. Chemical Engineering Journal, 2018, 348: 840-849.   CNF as additives in waterborne acrylate-based anti-corrosion coatings[J].
            [54]  GU R, YUN H, CHEN L F, et al. Regenerated cellulose films with   Journal of Dispersion Science and Technology, 2019, 41(13): 2037-2047.
                 amino-terminated hyperbranchedpolyamic  anchored nanosilver  for   [70]  LUO J Q (罗嘉倩), SU  Y Q (苏艳群), LIU J G (刘金刚),  et al.
                 active food packaging[J].  ACS  Applied Bio Materials,  2020, 3(1):   Oxygen and water vapor  barrier  properties  of nanocellulose
                 602-610.                                          materials: A review[J]. Transactions of China Pulp and Paper (中国
            [55]  HUANG B (黄彪), LU Q  L (卢麒麟), TANG L R  (唐丽荣).    造纸学报), 2019, 34(3): 61-70.
                 Research progress of nanocellulose manufacture and application[J].   [71]  TAYEB  A H, TAJVIDI M. Sustainable barrier system  via  self-
                 Journal of Forestry Engineering (林业工程学报), 2016, 1(5): 1-9.   assembly of colloidal montmorillonite and cross-linking resins  on
            [56]  LIU Y L, ZHANG  S  F,  LIN R,  et al. Potassium permanganate   nanocellulose interfaces[J]. ACS Applied Materials & Interfaces,
                 oxidation as a carboxylation and defibrillation method for extracting   2019, 11(1): 1604-1615.
                 cellulose nanofibrils to fabricate films with high transmittance  and   [72]  ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in
                 haze[J]. Green Chemistry, 2021, 23(20): 8069-8078.   surface-modified cellulose nanofibrils[J]. Progress in Polymer Science,
            [57]  HONG F (洪帆),  SONG J (宋洁), DU B (杜冰),  et al. Research   2019, 88: 241-264.
                 progress on functional modification of bacterial cellulose[J]. Fine   [73]  DAI L, LONG Z, CHEN J,  et al.  Robust guar gum/cellulose
                 Chemicals (精细化工), 2021, 38(12): 2377-2384.        nanofibrils multilayer films with good barrier properties[J]. ACS
            [58]  DIAS O A T, KONAR S, LEÃO  A L,  et al. Current state of   Appl Mater Interfaces, 2017, 9(6): 5477-5485.
                 applications of nanocellulose in flexible energy and electronic   [74]  LEE K Y, JEON  Y, KIM D,  et al. Double-crosslinked  cellulose
                 devices[J]. Frontiers in Chemistry, 2020, 8: 420-435.   nanofiber based bioplastic films for practical applications[J].
            [59]  NAIR S S, ZHU J Y, DENG  Y L,  et al. High performance green   Carbohydrate Polymers, 2021, 260: 117817-117824.
                 barriers based on nanocellulose[J]. Sustainable Chemical Processes,   [75]  WU M,  YANG J,  CHEN S L,  et al. TOCNC-g-PEI nanoparticle
                 2014, 2(1): 23-30.                                encapsulated oregano essential oil  for enhancing the antimicrobial
            [60]  AN B (安邦), XU M C (徐明聪), MA C H (马春慧), et al. Tuning   activity of cellulose nanofibril packaging films[J]. Carbohydrate
                 and application of  structural color of  cellulose nanocrystals chiral   Polymers, 2021, 274: 118654-118664.
                 composite materials[J]. Acta Polymerica Sinica (高分子学报), 2022,   [76]  SOBHAN  A, MUTHUKUMARAPPAN K,  CEN Z S,  et al.
                 53(3): 211-226.                                   Characterization of nanocellulose and activated carbon nanocomposite
            [61]  CHOWDHURY  R A, NURUDDIN M, CLARKSON C,  et al.   films'biosensing properties  for smart packaging[J]. Carbohydrate
                 Cellulose nanocrystal (CNC) coatings with controlled anisotropy as   Polymers, 2019, 225: 115189-115199.
                 high-performance gas barrier films[J]. ACS  Applied Materials &   [77]  ZHAO P, NDAYAMBAJE J P, LIU X, et al. Microbial spoilage of
                 Interfaces, 2019, 11(1): 1376-1383.               fruits: A review on causes and prevention methods[J]. Food Reviews
            [62]  WANG J W, GARDNER D J, STARK N M,  et al. Moisture and   International, 2020, (4): 1-22.
                 oxygen  barrier  properties of cellulose nanomaterial-based films[J].   [78]  BALBINOT-ALFARO E, CRAVEIRO D V,  LIMA K O,  et al.
                 ACS Sustainable Chemistry & Engineering, 2017, 6(1): 49-70.   Intelligent packaging with pH indicator potential[J]. Food Engineering
            [63]  LEITE L S F, PHAM C, BILATTO S, et al. Effect of tannic acid and   Reviews, 2019, 11(4): 235-244.
                 cellulose nanocrystals on antioxidant and antimicrobial properties of   [79]  WEN Y Y, LIU J, JIANG L, et al. Development of intelligent/active
                 gelatin films[J]. ACS Sustainable Chemistry &  Engineering, 2021,   food packaging film based on TEMPO-oxidized bacterial cellulose
                 9(25): 8539-8549.                                 containing  thymol and anthocyanin-rich purple potato extract for
            [64]  HE  Y Q, LI H, FEI X,  et al. Carboxymethyl cellulose/cellulose   shelf life extension of shrimp[J]. Food Packaging and Shelf Life,
                 nanocrystals immobilized silver nanoparticles as an effective coating   2021, 29: 100709-100718.
                 to improve barrier and antibacterial properties of paper for food   [80]  SHI C C,  WU Z  H, XU J F,  et al.  Fabrication of transparent and
                 packaging applications[J]. Carbohydrate Polymers, 2021, 252:   superhydrophobicnanopaper  via  coating hybrid SiO 2/MWCNTs
                 117156-117167.                                     composite[J]. Carbohydrate Polymers, 2019, 225: 115229-115237.
   79   80   81   82   83   84   85   86   87   88   89