Page 147 - 《精细化工》2022年第12期
P. 147
第 12 期 梁 慧,等: 双模板法 CeO 2 /g-C 3 N 4 形貌特征及湿式催化过氧化性能 ·2513·
(3)双模板法制备的 D-CeO 2 /g-C 3 N 4 具有更好 [14] DAN X, WANG C, XU X, et al. Improving the sinterability of CeO 2
by using plane-selective nanocubes[J]. Journal of the European
的催化降解效果。反应温度、催化剂投加量、H 2 O 2
Ceramic Society, 2019, 39(14): 4429-4434.
投加量以及 pH 等因素均对苯酚去除效果产生影响。 [15] TAGUCHI M, ISHIKAWA Y, KATAOKA S, et al. CeO 2
当温度为 75 ℃、D-CeO 2 /g-C 3 N 4 (7.5)催化剂投加量 nanocatalysts for the chemical recycling of polycarbonate[J]. Catalysis
Communications, 2016, 84: 93-97.
为 0.7 g、H 2 O 2 投加量为 0.5 mL、初始 pH 为 5 时, [16] MENG F M, FAN Z H, ZHANG C, et al. Morphology-controlled
对初始质量浓度为 100 mg/L 的苯酚水溶液(200 mL) synthesis of CeO 2 microstructures and their room temperature
ferromagnetism[J]. Journal of Materials Science & Technology,
的苯酚去除率可达 81.53%,在使用 5 次后仍具有一 2017, 33(5): 444-451.
定的催化稳定性。 [17] HAO X D, YOKO A, INOUE K, et al. Atomistic origin of
3+
high-concentration Ce in {100}-faceted Cr-substituted CeO 2
(4)CeO 2 /g-C 3 N 4 可作为 CWPO 处理模拟苯酚
nanocrystals[J]. Acta Materialia, 2021, 203: 116473.
废水的催化剂使用。但由于现阶段研究为实验室间 [18] MÉNDEZ-SALAZAR S, AGUILAR-MARTÍNEZ O, PIÑA-PÉREZ
3+
歇反应,暂不能在实际工程中应用,未来将进行实 Y, et al. Effect of the oxygen vacancies in CeO 2 by the Ce
incorporation to enhance the photocatalytic mineralization of
际工程废水的处理考察。 phenol[J]. ChemistrySelect, 2021, 6(14): 3435-3443.
[19] BALBONI R D C, CHOLANT C M, KRÜGER L U, et al. Influence
参考文献: of weathering and temperature on the electrochemical and
microscopical characteristics of CeO 2 and CeO 2:V 2O 5 sol-gel thin
[1] KUSWORO T D, KUMORO A C, UTOMO D P. Phenol and
ammonia removal in petroleum refinery wastewater using a poly films[J]. Materials Research Bulletin, 2021, 142: 111432.
(vinyl) alcohol coated polysulfone nanohybrid membrane[J]. Journal [20] WANG X Q, XU J J, WU Z X, et al. Complexing-coprecipitation
method to synthesize catalysts of cobalt, nitrogen-dopedcarbon, and
of Water Process Engineering, 2021, 39: 101718. CeO 2 nanosheets for highly efficient oxygen reduction[J].
[2] BHOSALE G S, VAIDYA P D, JOSHI J B, et al. Kinetics of ChemNanoMat, 2019, 5(6): 831-837.
ozonation of phenol and substituted phenols[J]. Industrial &
[21] KANEKO T, NAGATA F, KUGIMIYA S, et al. Morphological
Engineering Chemistry Research, 2019, 58(18): 7461-7466.
control of mesoporous silica particles by dual template method[J].
[3] ABOU-TALEB E M, HELLAL M S, KAMAL K H. Electro- Ceramics International, 2018, 44(16): 20581-20585.
oxidation of phenol in petroleum wastewater using a novel pilot-scale [22] SHI J L, CHEN Y, LIU T C, et al. Preparation of mesoporous
electrochemical cell with graphite and stainless-steel electrodes[J]. γ-Al 2O 3 catalysts by dual template method[J]. Journal of Dispersion
Water and Environment Journal, 2021, 35(1): 259-268. Science and Technology, 2020, 41(10): 1471-1479.
[4] JI J H (计建洪), ZHUANG H S (庄惠生). Treatment of high [23] WANG Y, GAO D W, LI C C, et al. Dual template engaged synthesis
concentration organic wastewater by a combined Fenton,biochemical of hollow ball-in-tube asymmetrical structured ceria[J]. Particle &
and physicochemical process[J]. China Water & Wastewater (中国给 Particle Systems Characterization, 2018, 35(3): 1700367.
水排水), 2019, 35(8): 108-110.
[24] SHAO Y, MA Y. Mesoporous CeO 2 nanowires as recycled
[5] WU G X, YIN Q D. Microbial niche nexus sustaining biological photocatalysts[J]. Science China Chemistry, 2012, 55(7): 1303-1307.
wastewater treatment[J]. NPJ Clean Water, 2020, 3(1): 1-6. [25] NI C Y, LI X Z, CHEN Z G, et al. Oriented polycrystalline
[6] MA D S, YI H, LAI C, et al. Critical review of advanced oxidation mesoporous CeO 2 with enhanced pore integrity[J]. Microporous and
processes in organic wastewater treatment[J]. Chemosphere, 2021, Mesoporous Materials, 2008, 115(3): 247-252.
275: 130104. [26] HUANG W Q, RUAN S H, ZHAO M J, et al. Visible-light-driven
[7] SABLE S S, SHAH K J, CHIANG P C, et al. Catalytic oxidative photocatalytic inactivation of Escherichia coli by 0D/2D CeO 2/g-C 3N 4
degradation of phenol using iron oxide promoted sulfonated-ZrO 2 by heterojunction: Bactericidal performance and mechanism[J]. Journal
Advanced Oxidation Processes (AOPs)[J]. Journal of the Taiwan of Environmental Chemical Engineering, 2021, 9(6): 106759.
Institute of Chemical Engineers, 2018, 91: 434-440. [27] MA R, ZHANG S, LI L, et al. Enhanced visible-light-induced
[8] FAN X F, LI S S, SUN M H, et al. Degradation of phenol by photoactivity of type- Ⅱ CeO 2/g-C 3N 4 nanosheet toward organic
coal-based carbon membrane integrating sulfate radicals-based pollutants degradation[J]. ACS Sustainable Chemistry & Engineering,
advanced oxidation processes[J]. Ecotoxicology and Environmental 2019, 7(10): 9699-9708.
Safety, 2019, 185: 109662. [28] YANG W N, LI D G, XU D N, et al. Effect of CeO 2 preparation
[9] PIZARRO A H, MOLINA C B, MUNOZ M, et al. Combining HDC method and Cu loading on CuO/CeO 2 catalysts for methane
and CWPO for the removal of p-chloro-m-cresol from water under combustion[J]. Journal of Natural Gas Chemistry, 2009, 18(4): 458-466.
ambient-like conditions[J]. Applied Catalysis B: Environmental, [29] ZHANG X J (张宣娇), SUN Y (孙羽), LIU M (刘明), et al. Effect of
2017, 216: 20-29. morphology on the performance of CeO 2 for catalytic wet air
[10] MESA-MEDINA S, REY A, DURÁN-VALLE C, et al. Performance oxidation of phenol[J].China Environmental Science (中国环境科
of iron-functionalized activated carbon catalysts (Fe/AC-f) on CWPO 学), 2020, 40(10): 4330-4334.
wastewater treatment[J]. Catalysts, 2021, 11(3): 337-354. [30] HE L F (何丽芳), LIAO Y N (廖银念), CHEN L M (陈礼敏), et al.
[11] GARCIA-MUÑOZ P, LEFEVRE C, ROBERT D, et al. Ti-substituted Shape effect of ceria nanocrystals with various morphologies on
LaFeO 3 perovskite as photoassisted CWPO catalyst for water toluene catalytic oxidation [J]. Acta Scientiae Circumstantiae (环境
treatment[J]. Applied Catalysis B: Environmental, 2019, 248: 120-128. 科学学报), 2013, 33(9): 2412-2421.
[12] GHOLIPOOR O, HOSSEINI S A. Phenol removal from wastewater [31] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials:
by CWPO process over the Cu-MOF nanocatalyst: Process modeling Controllable synthesis and applications in fuel cells and
by response surface methodology (RSM) and kinetic and isothermal photocatalysis[J]. Energy & Environmental Science, 2012, 5(5):
studies[J]. New Journal of Chemistry, 2021, 45(5): 2536-2549. 6717-6731.
[13] QIN H D, XIAO R, SHI W, et al. Magnetic core-shell-structured [32] SHE X J, XU H, WANG H F, et al. Controllable synthesis of
Fe 3O 4@CeO 2 as an efficient catalyst for catalytic wet peroxide CeO 2/g-C 3N 4 composites and their applications in the environment[J].
oxidation of benzoic acid[J]. RSC Advances, 2018, 8(59): 33972- Dalton Transactions, 2015, 44(15): 7021-7031.
33979. (下转第 2540 页)