Page 194 - 《精细化工》2022年第12期
P. 194

·2560·                            精细化工   FINE CHEMICALS                                 第 39 卷

            [10]  KUMAR J S, JANAM, KHANRA P,  et al. One pot synthesis of   36(2): 302-308.
                 Cu 2O/rGO composite using mango bark extract and exploration of its   [28]  YANG R C, LU X J, ZHANG H, et al. Glycol-assisted construction
                 electrochemical properties[J]. Electrochimica Acta, 2016, 193: 104-115.     of three-dimensionally ordered macroporous ZnO-Cu 2O-TiO 2 with
            [11]  CHEN C, LI D,  WANG A  Q,  et al. Interfacial enhancement for   enhanced photocatalytic properties[J]. Applied Surface Science,
                 hydrogen radical transfer  on  hollow Cu 2O/rGO nanohybrid with   2016, 362: 237-243.
                 efficient catalytic reduction activity[J]. Applied Catalysis A: General,   [29]  YOUN D H, BAE G H, HAN S H, et al. A highly efficient transition
                 2020, 590(C): 117331.                             metal nitride-based electrocatalyst for oxygen reduction reaction: TiN
            [12]  JANA M, SAHA  S, SAMANTA P,  et al. Investigation of the   on a CNT-graphene hybrid support[J]. Journal of  Materials
                 capacitive performance of tobacco solution reduced graphene oxide[J].   Chemistry A, 2013, 1: 8007-8015.
                 Materials Chemistry and Physics, 2015, 151: 72-80.     [30]  YONG Q, YE F C, XU J P, et al. Synthesis of cuprous oxide (Cu 2O)
            [13]  XIN S S, SHEN J G, LIU G C, et al. High electricity generation and   nanoparticles/graphene composite with an excellent electrocatalytic
                 COD removal from cattle wastewater in microbial fuel cells with 3D   activity towards glucose[J]. International Journal of Electrochemical
                 air cathode employed non-precious Cu 2O/reduced graphene oxide as   Science, 2012, 7(10): 10063-10073.
                 cathode catalyst[J]. Energy, 2020, 196(C): 117123.     [31]  MODESTRA J A, MOHAN S V. Bioelectro catalyzed electron efflux
            [14]  WANG Y T (王彦涛), ZHANG Y (张燕), TIAN X L (田秀蕾), et al.   in gram positive and gram negative bacteria: An insight into disparity
                 Effect of the modified anode by graphene-multi walled carbon   in electron transfer kinetics[J]. RSC Advances, 2014, 4(64): 34045-
                 nanotubes composites material with resazurin on the performance of   34055.
                 microbial fuel cells[J]. Chinese Journal of Microbiology (微生物学  [32]  ZHOU  L  H, FU  P, WEN D H,  et al. Self-constructed carbon
                 报), 2017, 44(9): 2029-2036.                       nanoparticles-coated porous biocarbon from plant moss as advanced
            [15]  FENG C H, LV  Z  S,  YANG X S,  et al. Anode modification with   oxygen reduction catalysts[J]. Applied Catalysis B: Environmental,
                 capacitive materials for a microbial fuel cell: An increase in transient   2016, 181: 635-643.
                 power or stationary power[J]. Physical Chemistry Chemical Physics,   [33]  LV Z S, CHEN Y F, WEI H C, et al. One-step electrosynthesis of
                 2014, 16(22): 10464-10472.                        polypyrrole/graphene oxide composites for microbial  fuel cell
            [16]  CHEN H (陈红), XIE J (谢静), CHENG Y Y (成钰莹), et al. Study   application[J]. Electrochimica Acta, 2013, 111: 366-373.
                 on performance and mechanism of enhanced biological nitrification   [34]  XIE M (谢淼), XU L J (徐龙君), HU J F (胡金凤), et al. Effects of
                 by zero-valent iron[J]. CIESC Journal (化工学报), 2021, 72(10):   cathode catalyst  modification on the performance of microbial fuel
                 5372-5383.                                        cells[J]. Journal of Fuel Chemistry and Technology (燃料化学学报),
            [17]  XIN S S, SHEN J G, LIU G  C,  et al. Electricity generation and   2017, 45(10): 1275-1280.
                 microbial community of single-chamber microbial fuel cells in   [35]  NOORI M T, MUKHERJEE C K, GHANGREKAR M M. Enhancing
                 response to Cu 2O nanoparticles/reduced graphene oxide as cathode   performance of microbial fuel cell by using graphene supported
                 catalyst[J]. Chemical Engineering Journal, 2020, 380(C): 122446.     V 2O 5-nanorod catalytic cathode[J]. Electrochim  Acta, 2017, 228:
            [18]  DONG X M, JIN H L, WANG R Y, et al. High volumetric capacitance,   513-521.
                 ultralong life supercapacitors enabled by waxberry-derived hierarchical   [36]  QUAN X C, MEI Y, XU H D,  et al. Optimization of Pt-Pd alloy
                 porous carbon materials[J]. Advanced Energy Materials, 2018, 106:   catalyst and supporting materials for oxygen reduction in air-cathode
                 50-57.                                            microbial fuel cells[J]. Electrochimica Acta, 2015, 165: 72-77.
            [19]  MOGHANLOU A O, BEZAATPOUR A, SADR M H, et al. Cu 2O/rGO   [37]  CHANG Y Y, ZHAO H Z, ZHONG C, et al. Effects of different Pt-M
                 as an efficient photocatalyst for transferring of nitro group to amine   (M=Fe, Co, Ni) alloy as cathodic catalyst on the performance of two
                 group  under visible light irradiation[J]. Materials Science in   chambered microbial fuel cells[J]. Russian Journal of Electrochemistry,
                 Semiconductor Processing, 2021, 130: 105838.      2014, 50(9): 885-890.
            [20]  DENG S Z,  TJOA V, FAN H M,  et al. Reduced graphene oxide   [38]  WANG A L (王奥林). Preparation of metal oxides composites and
                 conjugated Cu 2O nanowire mesocrystals for high-performance NO 2   research on the properties in microbial fuel cells[D]. Harbin: Harbin
                 gas sensor[J]. Journal of the American Chemical Society, 2012,   Engineering University (哈尔滨工程大学), 2018.
                 134(10): 4905-4917.                           [39] ZHAO T (赵婷), QIAN Z N (钱子牛), YI Y (易越), et al. Effect of
            [21]  CHENG Z P, XU  J M, ZHONG H,  et al. Repeatable synthesis of   graphene/polyaniline composite modified cathode on performance of
                 Cu 2O nanorods by a simple and novel reduction route[J]. Materials   MFC with denitrification biocathode[J]. China Environmental Science,
                 Letters, 2011, 65(12): 1871-1874.                 2020, 40(12): 5290-5298.
            [22]  ZHANG X, LI K X, YAN P Y, et al. N-type Cu 2O doped activated   [40]  WANG Z Y, CHEN C, LIU H, et al. Effects of carbon nanotube on
                 carbon as catalyst for improving  power generation  of air cathode   denitrification performance of  Alcaligenes sp.  TB: Promotion of
                 microbial fuel cells[J]. Bioresource Technology, 2015, 187: 299-304.     electron generation, transportation and consumption[J]. Ecotoxicology
            [23]  CHEN  K X, WANG X,  XIA P F,  et al. Efficient removal of   and Environmental Safety, 2019, 183(C): 109507.
                 2,2',4,4'-tetrabromodiphenyl ether with a  Z-scheme Cu 2O-(rGO-TiO 2)   [41]  DONG X Y, LIU H B, LONG S P, et al. Weak electrical stimulation
                 photocatalyst under sunlight irradiation[J]. Chemosphere, 2020, 254:   on biological denitrification: Insights from the denitrifying enzymes[J].
                 126806.                                           The Science of the Total Environment, 2021, 806(P4): 150926.
            [24]  MA D, WU J, GAO M C, et al. Fabrication of Z-scheme g-C 3N 4/rGO/   [42]  CHEN Z H, LI K X, ZHANG P, et al. The performance of activated
                 Bi 2WO 6 photocatalyst with enhanced visible-light photocatalytic   carbon treated with H 3PO 4 at 80 °C in the air-cathode microbial fuel
                 activity[J]. Chemical Engineering Journal, 2016, 290: 136-146.     cell[J]. Chemical Engineering Journal, 2015, 259: 820-826.
            [25]  CHEN B, YU J, WANG R, et al. Three-dimensional ordered macroporous   [43]  YANG X B (杨晓贝). Effect of CuO NPs on the treatment of low
                 g-C 3N 4-Cu 2O-TiO 2 heterojunction for enhanced hydrogen production[J].   C/N wastewater by granular sludge[J]. Environmental Science  &
                 Science China Materials, 2022, 65(1): 139-146.     Technology (环境科学与技术), 2021, 44(1): 94-99.
            [26]  CHENG Z P, XU  J M, ZHONG H,  et al. Repeatable synthesis of   [44]  LI D (李冬), LI Y (李悦), LI Y  M (李雨朦),  et al. Study on
                 Cu 2O nanorods by a simple and novel reduction route[J]. Materials   simultaneous nitrification and endogenous denitrification for nitrogen
                 Letters, 2011, 65(12): 1871-1874.                 and phosphorus removal by aerobic granular sludge under gradient
            [27]  CHEN X P (陈小平), WEI Y S (魏源送), FAN M (范敏),  et al.   feeding[J]. China  Environmental Science (中国环境科学), 2022,
                 Synthesis and photocatalytic activity of monodispersed Cu 2O   42(3): 1113-1119.
                 microcubesprepared by a facile methanol thermal reduction method[J].
                 Chinese Journal of Inorganic Chemistry (无机化学学报), 2020,                      (下转第 2592 页)
   189   190   191   192   193   194   195   196   197   198   199