Page 64 - 《精细化工》2022年第12期
P. 64

·2430·                            精细化工   FINE CHEMICALS                                 第 39 卷

                由表 3 可知,转变温度在人体安全温度以下的基                        [8]  WANG Y  (王彦), XIA  L (夏琳), XIN Z X (辛振祥). Effect of
                                                                   crosslinking degree on properties  of  foamed  Eucommia ulmoides
            体材料包括聚 Fe 3 O 4 /PDLLA-100、MagSilica 50-H8/            gum shape  memory  materials[J]. China Synthetic Rubber Industry
            PDC-10、Fe 3 O 4 /PCLAU-15 和 Fe 3 O 4 /EUG-20。在这        (合成橡胶工业), 2018, 41(5): 383-388.
                                                               [9]   LIU Q (刘奇),YU H (于欢),YANG F (杨凤), et al. Comparative
            几种基体中,Fe 3 O 4 /EUG 复合材料和 Fe 3 O 4 /PDLLA-             study on isothermal crystallization hehaviors of eucommiaulmoide
            100 的拉伸强度较高,均超过 20 MPa,但 Fe 3 O 4 /EUG                 gum and trans-1,4-polyisoprene[J]. Polymer Bulletin (高分子通报),
                                                                   2015, (12): 71-79.
            -20 复合材料具有更高的断裂伸长率和回复速度。综
                                                               [10]  TSUJIMOTO T, TOSHIMITSU K, UYAMA H,  et al.Maleated
            合对比已报道的磁响应形状记忆材料可知,                                    trans-1, 4-polyisoprene from  Eucommia ulmoides oliver with
                                                                   dynamic network structure and its  shape memory property[J].
            Fe 3 O 4 /EUG-20 复合材料具有最佳的综合性能。
                                                                   Polymer, 2014, 55(25): 6488-6493.
                                                               [11]  URBAN M, STRANKOWSKI M.  Shape memory polyurethane
            3   结论                                                 materials containing ferromagnetic iron oxide and graphene
                                                                   nanoplatelets[J]. Materials, 2017, 10(9): 1083.
                                                               [12]  XIA S (夏爽), LIU T (刘拓), LI J  (李晶),  et al.  Synthesis and
                (1)采用机械加工将 Fe 3 O 4 纳米粒子引入 EUG
                                                                   characterization of magnetically responsive shape memory polymer
            基体中。当 Fe 3 O 4 纳米粒子含量≥30%时,易在基体                        with fast magnetic responsiveness[J]. Polymer Materials Science and
            中产生团聚,导致分布不均,产生应力集中,使复                                 Engineering (高分子材料科学与工程), 2013, 29(4): 117-120.
                                                               [13]  XIAO Q (肖乾), WANG B (王斌), HUANG Y W (黄月文), et al.
            合材料的力学性能小幅下降。                                          Preparation and performance of a magnetic-superhydrophobic cotton
                (2)通过 DMA 验证了 Fe 3 O 4 /EUG 复合材料在                  fiber[J]. Fine Chemicals (精细化工), 2021, 38(7): 1473-1479.
                                                               [14]  LIU R R, ZHANG Q, ZHOU Q, et al. Nondegradable magnetic poly
            热响应下的形状回复过程,经应变曲线计算,3 次                                (carbonate urethane) microspheres with good shape memory  as a
            循环后 Fe 3 O 4 /EUG 复合材料的形状固定率和形状回                       proposed material for vascular embolization[J]. Journal of the
                                                                   Mechanical Behavior of Biomedical Materials, 2018, 82: 9-17.
            复率均保持在 98%以上,表现出良好和稳定的形状                           [15]  YU K, WESTBROOK K K, KAO P H, et al. Design considerations
            记忆性能。                                                  for shape  memory  polymer  composites with magnetic particles[J].
                                                                   Journal of Composite Materials, 2012, 47(1): 51-63.
                (3)利用感应加热装置验证了 Fe 3 O 4 /EUG 复合                [16]  ZOU T (邹涛), GUO C X (郭灿雄), DUAN X (段雪),  et al.
            材料在磁响应下的形状回复过程,结果表明,含有                                 Preparation and characterization of nano-size Fe 3O 4 particles with
                                                                   strong magnetism[J]. Fine Chemicals (精细化工), 2002, 19(12):
            Fe 3 O 4 纳米粒子的复合材料可在交变磁场中快速升                           707-710.
            温至相应温度,最快在 12 s 内即可实现形状的回复。                        [17]  XIA L (夏雷), QUAN J S (全姬善), YU T (于婷), et al. Preparation
                                                                   of oleic acid modified superparamagnetic iron oxide nanoparticles[J].
                 磁、热双响应的 Fe 3O 4 /EUG 形状记忆复合材料                     Fine Chemicals (精细化工), 2017, 34(7): 735-739, 779.
            实现了磁场中快速、安全、无接触式加热,在已报道                            [18]  ZHAO W, ZHANG F H, LENG J S, et al. Personalized 4D printing
                                                                   of bioinspired  tracheal scaffold concept based on  magnetic
            的磁响应形状记忆材料中具有最佳的综合性能,使其                                stimulated shape  memory  composites[J]. Composites Science and
            有望在生物医学及智能高分子材料等领域得到应用。                                Technology, 2019, 184(10): 107866.
                                                               [19]  GU S Y, CHANG K, JIN S P. A dual-induced self-expandable stent
            参考文献:                                                  based on biodegradable shape memory polyurethane nanocomposites
                                                                   (PCLAU/Fe 3O 4) triggered around body temperature[J]. Journal of
            [1]   LIN N (林娜), BIAN J H (边江海), SONG  Y F (宋雨方),  et al.   Applied Polymer Science, 2017: 45686.
                 Preparation of fluorescent shape memory polymer  materials by   [20]  LI D H, YANG  C, HUANG  Y Q,  et al. Novel green resource
                 self-drying membrane in aqueous solution at room temperature[J].   material:  Eucommia ulmoides  gum[J]. Resources Chemicals and
                 Fine Chemicals (精细化工), 2021, 38(6): 1103-1108.    Materials, 2022, 1(1): 114-128.
            [2]   HAI C J (海春杰), SONG Y F (宋雨方), LIN N (林娜),  et al.   [21]  RAZZAQ M  Y,  BEHL M, NOCHEL U,  et al. Magnetically
                 Preparation of an amphiphilic epoxy resin-based fluorescent shape   controlled shape-memory effects of  hybrid nanocomposites from
                 memory polymer film[J]. Fine Chemicals (精细化工), 2020, 37(5):   oligo (ω-pentadecalactone) and covalently integrated magnetite
                 898-905.                                          nanoparticles[J]. Polymer, 2014, 55(23): 5953-5960.
            [3]   LIAO J X, HUANG J H, WANG T, et al. Rapid shape memory and   [22]  ZHENG X T, ZHOU S B, XIAO Y, et al. Shape memory effect of
                 pH-modulated spontaneous actuation of dopamine containing   poly (D, L-lactide)/Fe 3O 4  nanocomposites by inductive heating of
                 hydrogels[J]. Chinese Journal of Polymer Science, 2017, 35(10):   magnetite particles[J]. Colloids and Surfaces B: Biointerfaces, 2009,
                 1297-1306.                                        71(1): 67-72.
            [4]   SUN J Q (孙俊奇). Design and construction of novel light-driven   [23]  WEIGEL T, MOHR R, LENDLEIN A. Investigation of parameters to
                 shape memory ordered porous films[J]. Journal of Functional   achieve temperatures required to initiate the shape-memory effect of
                 Polymers (功能高分子学报), 2018, 31(4): 299-301.         magnetic nanocomposites by inductive heating[J]. Smart Materials
            [5]   SUN Y  C,  CHU M, HUANG M,  et al. Hybrid electroactive shape   and Structures, 2009, 18(2): 025011.
                 memory polymer composites with room temperature deformability[J].   [24]  RAZZAQ M Y, BEHL M, LENDLEIN A. Magnetic memory effect
                 Macromolecular Materials and Engineering, 2019, 304(10): 1900196.   of nanocomposites[J]. Advanced Functional Materials, 2012, 22(1):
            [6]   BAI S, ZOU H, DIETSCH  H, et  al. Functional iron oxide   184-191.
                 nanoparticles as reversible crosslinks for magnetically  addressable   [25]  GOLBANG A, KOKABI M. Temporary shape development in shape
                 shape-memory polymers[J]. Macromolecular Chemistry and Physics,   memory nanocomposites using magnetic force[J]. European Polymer
                 2014, 215(5): 398-404.                            Journal, 2011, 47(8): 1709-1719.
            [7]   KANG H L, XU  M Z,  WANG H Y,  et al. Heat-responsive shape   [26]  ZHANG X  M,  LU X L, WANG  Z M,  et al.  Biodegradable shape
                 memory  Eucommia ulmoides gum composites reinforced by zinc   memory nanocomposites with thermal and  magnetic field
                 dimethacrylate[J].  Journal of Applied Polymer Science, 2020,   responsiveness[J]. Journal of Biomaterials Science, Polymer Edition,
                 137(38): 49133.                                   2013, 24(9): 1057-1070.
   59   60   61   62   63   64   65   66   67   68   69