Page 64 - 《精细化工》2022年第12期
P. 64
·2430· 精细化工 FINE CHEMICALS 第 39 卷
由表 3 可知,转变温度在人体安全温度以下的基 [8] WANG Y (王彦), XIA L (夏琳), XIN Z X (辛振祥). Effect of
crosslinking degree on properties of foamed Eucommia ulmoides
体材料包括聚 Fe 3 O 4 /PDLLA-100、MagSilica 50-H8/ gum shape memory materials[J]. China Synthetic Rubber Industry
PDC-10、Fe 3 O 4 /PCLAU-15 和 Fe 3 O 4 /EUG-20。在这 (合成橡胶工业), 2018, 41(5): 383-388.
[9] LIU Q (刘奇),YU H (于欢),YANG F (杨凤), et al. Comparative
几种基体中,Fe 3 O 4 /EUG 复合材料和 Fe 3 O 4 /PDLLA- study on isothermal crystallization hehaviors of eucommiaulmoide
100 的拉伸强度较高,均超过 20 MPa,但 Fe 3 O 4 /EUG gum and trans-1,4-polyisoprene[J]. Polymer Bulletin (高分子通报),
2015, (12): 71-79.
-20 复合材料具有更高的断裂伸长率和回复速度。综
[10] TSUJIMOTO T, TOSHIMITSU K, UYAMA H, et al.Maleated
合对比已报道的磁响应形状记忆材料可知, trans-1, 4-polyisoprene from Eucommia ulmoides oliver with
dynamic network structure and its shape memory property[J].
Fe 3 O 4 /EUG-20 复合材料具有最佳的综合性能。
Polymer, 2014, 55(25): 6488-6493.
[11] URBAN M, STRANKOWSKI M. Shape memory polyurethane
3 结论 materials containing ferromagnetic iron oxide and graphene
nanoplatelets[J]. Materials, 2017, 10(9): 1083.
[12] XIA S (夏爽), LIU T (刘拓), LI J (李晶), et al. Synthesis and
(1)采用机械加工将 Fe 3 O 4 纳米粒子引入 EUG
characterization of magnetically responsive shape memory polymer
基体中。当 Fe 3 O 4 纳米粒子含量≥30%时,易在基体 with fast magnetic responsiveness[J]. Polymer Materials Science and
中产生团聚,导致分布不均,产生应力集中,使复 Engineering (高分子材料科学与工程), 2013, 29(4): 117-120.
[13] XIAO Q (肖乾), WANG B (王斌), HUANG Y W (黄月文), et al.
合材料的力学性能小幅下降。 Preparation and performance of a magnetic-superhydrophobic cotton
(2)通过 DMA 验证了 Fe 3 O 4 /EUG 复合材料在 fiber[J]. Fine Chemicals (精细化工), 2021, 38(7): 1473-1479.
[14] LIU R R, ZHANG Q, ZHOU Q, et al. Nondegradable magnetic poly
热响应下的形状回复过程,经应变曲线计算,3 次 (carbonate urethane) microspheres with good shape memory as a
循环后 Fe 3 O 4 /EUG 复合材料的形状固定率和形状回 proposed material for vascular embolization[J]. Journal of the
Mechanical Behavior of Biomedical Materials, 2018, 82: 9-17.
复率均保持在 98%以上,表现出良好和稳定的形状 [15] YU K, WESTBROOK K K, KAO P H, et al. Design considerations
记忆性能。 for shape memory polymer composites with magnetic particles[J].
Journal of Composite Materials, 2012, 47(1): 51-63.
(3)利用感应加热装置验证了 Fe 3 O 4 /EUG 复合 [16] ZOU T (邹涛), GUO C X (郭灿雄), DUAN X (段雪), et al.
材料在磁响应下的形状回复过程,结果表明,含有 Preparation and characterization of nano-size Fe 3O 4 particles with
strong magnetism[J]. Fine Chemicals (精细化工), 2002, 19(12):
Fe 3 O 4 纳米粒子的复合材料可在交变磁场中快速升 707-710.
温至相应温度,最快在 12 s 内即可实现形状的回复。 [17] XIA L (夏雷), QUAN J S (全姬善), YU T (于婷), et al. Preparation
of oleic acid modified superparamagnetic iron oxide nanoparticles[J].
磁、热双响应的 Fe 3O 4 /EUG 形状记忆复合材料 Fine Chemicals (精细化工), 2017, 34(7): 735-739, 779.
实现了磁场中快速、安全、无接触式加热,在已报道 [18] ZHAO W, ZHANG F H, LENG J S, et al. Personalized 4D printing
of bioinspired tracheal scaffold concept based on magnetic
的磁响应形状记忆材料中具有最佳的综合性能,使其 stimulated shape memory composites[J]. Composites Science and
有望在生物医学及智能高分子材料等领域得到应用。 Technology, 2019, 184(10): 107866.
[19] GU S Y, CHANG K, JIN S P. A dual-induced self-expandable stent
参考文献: based on biodegradable shape memory polyurethane nanocomposites
(PCLAU/Fe 3O 4) triggered around body temperature[J]. Journal of
[1] LIN N (林娜), BIAN J H (边江海), SONG Y F (宋雨方), et al. Applied Polymer Science, 2017: 45686.
Preparation of fluorescent shape memory polymer materials by [20] LI D H, YANG C, HUANG Y Q, et al. Novel green resource
self-drying membrane in aqueous solution at room temperature[J]. material: Eucommia ulmoides gum[J]. Resources Chemicals and
Fine Chemicals (精细化工), 2021, 38(6): 1103-1108. Materials, 2022, 1(1): 114-128.
[2] HAI C J (海春杰), SONG Y F (宋雨方), LIN N (林娜), et al. [21] RAZZAQ M Y, BEHL M, NOCHEL U, et al. Magnetically
Preparation of an amphiphilic epoxy resin-based fluorescent shape controlled shape-memory effects of hybrid nanocomposites from
memory polymer film[J]. Fine Chemicals (精细化工), 2020, 37(5): oligo (ω-pentadecalactone) and covalently integrated magnetite
898-905. nanoparticles[J]. Polymer, 2014, 55(23): 5953-5960.
[3] LIAO J X, HUANG J H, WANG T, et al. Rapid shape memory and [22] ZHENG X T, ZHOU S B, XIAO Y, et al. Shape memory effect of
pH-modulated spontaneous actuation of dopamine containing poly (D, L-lactide)/Fe 3O 4 nanocomposites by inductive heating of
hydrogels[J]. Chinese Journal of Polymer Science, 2017, 35(10): magnetite particles[J]. Colloids and Surfaces B: Biointerfaces, 2009,
1297-1306. 71(1): 67-72.
[4] SUN J Q (孙俊奇). Design and construction of novel light-driven [23] WEIGEL T, MOHR R, LENDLEIN A. Investigation of parameters to
shape memory ordered porous films[J]. Journal of Functional achieve temperatures required to initiate the shape-memory effect of
Polymers (功能高分子学报), 2018, 31(4): 299-301. magnetic nanocomposites by inductive heating[J]. Smart Materials
[5] SUN Y C, CHU M, HUANG M, et al. Hybrid electroactive shape and Structures, 2009, 18(2): 025011.
memory polymer composites with room temperature deformability[J]. [24] RAZZAQ M Y, BEHL M, LENDLEIN A. Magnetic memory effect
Macromolecular Materials and Engineering, 2019, 304(10): 1900196. of nanocomposites[J]. Advanced Functional Materials, 2012, 22(1):
[6] BAI S, ZOU H, DIETSCH H, et al. Functional iron oxide 184-191.
nanoparticles as reversible crosslinks for magnetically addressable [25] GOLBANG A, KOKABI M. Temporary shape development in shape
shape-memory polymers[J]. Macromolecular Chemistry and Physics, memory nanocomposites using magnetic force[J]. European Polymer
2014, 215(5): 398-404. Journal, 2011, 47(8): 1709-1719.
[7] KANG H L, XU M Z, WANG H Y, et al. Heat-responsive shape [26] ZHANG X M, LU X L, WANG Z M, et al. Biodegradable shape
memory Eucommia ulmoides gum composites reinforced by zinc memory nanocomposites with thermal and magnetic field
dimethacrylate[J]. Journal of Applied Polymer Science, 2020, responsiveness[J]. Journal of Biomaterials Science, Polymer Edition,
137(38): 49133. 2013, 24(9): 1057-1070.