Page 155 - 《精细化工》2022年第3期
P. 155

第 39 卷第 3 期                             精   细   化   工                                  Vol.39, No.3
             2022 年 3 月                              FINE CHEMICALS                                 Mar.  2022


              催化与分离提纯技术
                       快速界面法制备 FeOOH@CoNi-LDH@NF


                                                用于高效析氧



                                                           *
                            卫学玲,邹祥宇,包维维 ,艾桃桃,李文虎,蒋   鹏
                                   (陕西理工大学  材料科学与工程学院,陕西  汉中  723000)

                 摘要:以六水合硝酸钴、六水合硝酸镍、尿素和氟化铵为原料,采用水热法在镍网上原位构筑层状双金属氢氧
                 化物(LDH)(CoNi-LDH@NF),然后采用快速界面法在硝酸钠和六水合氯化铁的 100  ℃溶液中对其进行刻蚀
                 制备了 FeOOH@CoNi-LDH@NF。利用 XRD、SEM、XPS 和 TEM 对 FeOOH@CoNi-LDH@NF 进行了形貌表征
                 和物相分析,并在 1 mol/L KOH 电解液中进行了电催化析氧性能测试。结果表明,异质界面明显的粗糙纳米棒
                 结构极大地增多了 FeOOH@CoNi-LDH@NF 的有效活性位点数,提升了对中间物质的转换速率。驱动 100
                       2
                 mA/cm 的电流密度仅需 291 mV 过电势,Tafel 斜率为 48 mV/dec;该电极具有至少 100 h 的耐久性,展示出优
                 异的碱性析氧性能。
                 关键词:快速界面法;催化剂;析氧反应;FeOOH@CoNi-LDH@NF;层状双金属氢氧化物;催化技术
                 中图分类号:TQ129;TQ426      文献标识码:A      文章编号:1003-5214 (2022) 03-0577-07


                      FeOOH@CoNi-LDH@NF prepared by fast interface engineering

                                      for efficient oxygen evolution reaction

                                                               *
                         WEI Xueling, ZOU Xiangyu, BAO Weiwei , AI Taotao, LI Wenhu, JIANG Peng
                   (School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China)


                 Abstract: CoNi-layered  double metal hydroxides (LDH) (CoNi-LDH@NF) was constructed in  situ on
                 nickel network by hydrothermal method using cobalt nitrate hexahydrate, nickel nitrate hexahydrate, urea
                 and ammonium fluoride as  raw materials. CoNi-LDH  was etched in sodium nitrate and ferric chloride
                 hexahydrate solution at  100  ℃  by fast interface engineering to form FeOOH@CoNi-LDH@NF. The
                 morphology and phase of FeOOH@CoNi-LDH@NF were characterized by XRD, SEM, XPS and TEM.
                 Electrocatalytic oxygen evolution performance was tested in 1 mol/L KOH electrolyte. The results showed
                 that the  rough heterogeneous nanorods greatly increased the number of active sites of
                 FeOOH@CoNi-LDH@NF and the conversion rate of intermediate substances. FeOOH@CoNi-LDH@NF
                                                                                     2
                 required an overpotential of 291 mV to deliver a current density of 100 mA/cm , and Tafel slope was
                 48 mV/dec. The  electrode had  good  durability at least  100  h and exhibited excellent oxygen evolution
                 reaction performance in alkaline.
                 Key words:  fast interface engineering;  catalyst; oxygen evolution  reaction; FeOOH@CoNi-LDH@NF;
                 layered double metal hydroxides; catalysis technology


                                                                                                          [3]
                 工业经济的快速发展引发能源危机和环境恶                           气的制备方法很多。例如:甲醇水蒸气重整制氢 、
                                                  [1]
                                                                         [4]
            化,太阳能、风能等新能源得到大力开发 。氢气                             电解水制氢 等。前者本质上并未摆脱对化石能源
                                                        [2]
                             8
            燃烧值高(1.4×10  J/kg,约为甲烷的 2788 倍) ,                  的依赖。而电解水制氢采用可再生电能进行水裂解,
            燃烧产物仅为 H 2 O,理论上可实现碳的零排放。氢                         制取的氢气纯度高。

                 收稿日期:2021-11-23;  定用日期:2021-12-16; DOI: 10.13550/j.jxhg.20211193
                 基金项目:国家自然科学基金青年科学基金项目(51504147)
                 作者简介:卫学玲(1980—),女,工程师。联系人:包维维(1982—),女,副教授,E-mail:baowei1834@163.com。
   150   151   152   153   154   155   156   157   158   159   160