Page 182 - 《精细化工》2022年第4期
P. 182
·818· 精细化工 FINE CHEMICALS 第 39 卷
由图 10 可知,随着反应的进行,在 Fe/C-pH10 trichloroethylene in groundwater by nano iron sulfide[D]. Beijing:
和 Fe/C-pH10-Q 降解 TCE 的反应中,TCE 的含量均 China University of Geosciences (Beijing)〔中国地质大学(北京)〕,
2020.
逐渐减小直至完全去除,产物乙烯和乙烷的总含量 [7] JING L X (井柳新), CHENG L (程丽). Progress and status of in situ
逐渐增加直至达到平衡。结果表明,球磨几乎不会 remediation technology of groundwater[J]. Technology of Water
Treatment (水处理技术), 2010, 36(7): 6-9.
对产物 Fe/C-pH10-Q 降解 TCE 的性能产生影响。 [8] ZHAO L Z (赵玲子). Study on remediation of Cr(Ⅵ) polluted
综合 Fe/C-pH10-Q 的地下传输性能和降解 TCE groundwater by CMC modified nanoscale zero-valent iron in-situ
活性结果可知,其具备在地下水环境中对 TCE 进行 reaction belt[D]. Changchun:Jilin University (吉林大学), 2020.
[9] ZHU Y Y (朱颖一), WANG C C (王城晨), WANG M X (王明新), et al.
降解的能力,具有一定的应用前景。 Remediation of nitrobenzene contaminated groundwater by S-NZVI
reaction zone[J]. China Environmental Science (中国环境科学),
3 结论 2020, 40(2): 670-680.
[10] FU X R (傅晓日). Study on Fe catalyzed sodium percarbonate
technology for remediation of benzene contaminated groundwater[D].
通过改变水热反应体系的 pH 制得 5 种 Fe/C 复
Shanghai: East China University of Science and Technology (华东理
合材料(Fe/C-pH2、Fe/C-pH4、Fe/C-pH6、Fe/C-pH8、 工大学), 2018.
Fe/C- pH10),得到如下结论: [11] VARANASI P, FULLANA A, SIDHU S. Remediation of PCB
contaminated soils using iron nano-particles[J]. Chemosphere, 2007,
(1)XRD、SEM、TG 和氮气吸附-脱附结果表 66(6): 1031-1038.
明,nZVI 被均匀分布在生物炭表面,不发生团聚现 [12] RODRÍGUEZ-MAROTO J M, GARCÍA-HERRUZO F, GARCÍA-
RUBIO A, et al. Kinetics of the chemical reduction of nitrate by
象,生物炭可使吸附的 TCE 与 nZVI 实现靶向去除,
zero-valentiron[J]. Chemosphere, 2009, 74(6): 804-809.
提高反应活性。通过调控溶液 pH,可以制得不同粒 [13] HWANG Y H, KIM D G, AHN Y T, et al. Fate of nitrogen species in
径、比表面积和 nZVI 含量的 Fe/C 复合材料。粒径和 nitrate reduction by nanoscale zero valent iron and characterization
of the reaction kinetics[J]. Water Science & Technology, 2010, 61(3):
nZVI 含量的大 小顺 序为 : Fe/C-pH2<Fe/C-pH4< 705-712.
Fe/C-pH6<Fe/C-pH8<Fe/C-pH10。比表面积的大小顺序 [14] PHENRAT T, FAGERLUND F, ILLANGASEKARE T, et al.
0
Polymer-modified Fe nanoparticles target entrapped NAPL in two
为:Fe/C-pH2>Fe/C-pH4>Fe/C-pH6>Fe/C-pH8>Fe/C-pH10。
dimensional porous media: Effect of particle concentration, NAPL
(2)通过对生成的氯离子进行离子色谱检测可 saturation, and injection strategy[J]. Environmental Science &
知,Fe/C 复合材料对 TCE 的降解速率大小顺序为: Technology, 2011, 45(14): 6102-6109.
[15] HE F, ZHAO D Y, PAUL C. Field assessment of carboxymethyl
Fe/C-pH10>Fe/C-pH8>Fe/C-pH6>Fe/C-pH4>Fe/C-pH2。 cellulose stabilized iron nanoparticles for in situ destruction of
在反应 48 h 时,Fe/C-pH10 对 TCE 的去除率可达 chlorinated solvents in source zones[J]. Water Research, 2010, 44(7):
2360-2370.
100%。
[16] SU C, PULS R W, KRUG T A, et al. A two and half-year-
(3)对 Fe/C-pH10 进行球磨处理后发现,球磨 performance evaluation of a field test on treatment of source zone
后产物 Fe/C-pH10-Q 具有和 Fe/C-pH10 相似的 nZVI tetrachloroethene and its chlorinated daughter products using emulsified
zero valent iron nanoparticles[J]. Water Research, 2012, 46(16):
分散性、粒径、含量和降解 TCE 活性,且 Fe/C-pH10-Q 5071-5084.
具有良好的地下传输性能,适用于对地下水中 TCE [17] MASCIANGIOLI T, ZHANG W X. Environmental technologies at
the nanoscale[J]. Environmental Science & Technology, 2003, 37(5):
的去除,具有一定的实用价值。
102A-108A.
[18] LI F, VIPULANANDAN C, MOHANTY K K. Microemulsion and
参考文献 solution approaches to nanoparticle iron production for degradation
[1] SUN R L (孙瑞玲),YUE Y L (岳永丽), ZHANG G Z (张国祯), et al. of trichloroethylene[J]. Colloids & Surfaces A Physicochemical &
Study on the chlorinated hydrocarbon of PM2.5 samples with the aid Engineering Aspects, 2003, 223(1): 103-112.
of principal component analysis[J]. Environmental Science & [19] SHERMAN P,DARAB J G, MALLOUK T E. Remediation of Cr(Ⅵ)
Technology, 2020, 43(5): 88-93. and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent
[2] REN F (任斐), JIN H M (金红梅), WANG R T (王茹婷), et al. iron[J]. Environmental Science & Technology, 2000, 34(12):
Carcinogenicity of trichloroethylene[J]. Journal of Environmental 2564-2569.
and Occupational Medicine (环境与职业医学), 2018, 35(1): 1-4. [20] LI S P, LIU P, DU X M. A field pilot test for chlorohydrocarbon
[3] MCLAREN R G, SUDICKY E A, PARK Y, et al. Numerical simulation contaminated groundwater by using ZVI and controlled releasing
of DNAPL emissions and remediation in a fractured dolomitic carbon material[J]. Water Science and Technology, 2013, 19: 134-
aquifer[J]. Journal of Contaminant Hydrology, 2012, 136/137: 56-71. 138.
[4] LI Z (李哲). Study on remediation mechanism of trichloroethylene [21] WU X, YANG Q, XU D, et al. Simultaneous adsorption/reduction of
and typical antibiotics in groundwater by advanced oxidation bromate by nanoscale zerovalent iron supported on modified activated
technology[D] Beijing: China University of Geosciences (Beijing) carbon[J]. Industrial & Engineering Chemistry Research, 2013,
〔中国地质大学(北京)〕, 2019. 52(35): 12574-12581.
[5] CHEN F (陈帆). Study on the efficiency and mechanism of cathode [22] SANG W X (桑伟璇), CHEN R (陈蓉), LI X Y (李小燕), et al.
biological dechlorination promoted by sulfur autotrophic denitrification Study on removal of U(Ⅵ) from aqueous solution by cornstarch-
process[D]. Harbin:Harbin Institute of Technology (哈尔滨工业大 loaded nanoscale zero-valent iron[J] Nonferrous Metals (Extractive
学), 2020. Metallurgy) (有色金属: 冶炼部分), 2020, (8): 92-98.
[6] HAN Y T (韩奕彤). Study on the reactivity, toxicity and migration of (下转第 827 页)