Page 182 - 《精细化工》2022年第4期
P. 182

·818·                             精细化工   FINE CHEMICALS                                 第 39 卷

                 由图 10 可知,随着反应的进行,在 Fe/C-pH10                      trichloroethylene in groundwater by nano iron sulfide[D]. Beijing:
            和 Fe/C-pH10-Q 降解 TCE 的反应中,TCE 的含量均                     China University of Geosciences (Beijing)〔中国地质大学(北京)〕,
                                                                   2020.
            逐渐减小直至完全去除,产物乙烯和乙烷的总含量                             [7]   JING L X (井柳新), CHENG L (程丽). Progress and status of in situ
            逐渐增加直至达到平衡。结果表明,球磨几乎不会                                 remediation technology of groundwater[J]. Technology of Water
                                                                   Treatment (水处理技术), 2010, 36(7): 6-9.
            对产物 Fe/C-pH10-Q 降解 TCE 的性能产生影响。                    [8]   ZHAO  L Z (赵玲子). Study on remediation  of Cr(Ⅵ) polluted
                 综合 Fe/C-pH10-Q 的地下传输性能和降解 TCE                     groundwater by CMC  modified  nanoscale zero-valent iron  in-situ
            活性结果可知,其具备在地下水环境中对 TCE 进行                              reaction belt[D]. Changchun:Jilin University (吉林大学), 2020.
                                                               [9]   ZHU Y Y (朱颖一), WANG C C (王城晨), WANG M X (王明新), et al.
            降解的能力,具有一定的应用前景。                                       Remediation of nitrobenzene contaminated groundwater by S-NZVI
                                                                   reaction zone[J]. China Environmental Science (中国环境科学),
            3   结论                                                 2020, 40(2): 670-680.
                                                               [10]  FU X  R (傅晓日). Study on Fe catalyzed sodium percarbonate
                                                                   technology  for  remediation of benzene contaminated  groundwater[D].
                 通过改变水热反应体系的 pH 制得 5 种 Fe/C 复
                                                                   Shanghai: East China University of Science and Technology (华东理
            合材料(Fe/C-pH2、Fe/C-pH4、Fe/C-pH6、Fe/C-pH8、               工大学), 2018.
            Fe/C- pH10),得到如下结论:                                [11]  VARANASI P, FULLANA  A, SIDHU S.  Remediation of PCB
                                                                   contaminated soils using iron nano-particles[J]. Chemosphere, 2007,
                (1)XRD、SEM、TG 和氮气吸附-脱附结果表                          66(6): 1031-1038.
            明,nZVI 被均匀分布在生物炭表面,不发生团聚现                          [12]  RODRÍGUEZ-MAROTO J M,  GARCÍA-HERRUZO F, GARCÍA-
                                                                   RUBIO A,  et al. Kinetics of the chemical reduction of  nitrate by
            象,生物炭可使吸附的 TCE 与 nZVI 实现靶向去除,
                                                                   zero-valentiron[J]. Chemosphere, 2009, 74(6): 804-809.
            提高反应活性。通过调控溶液 pH,可以制得不同粒                           [13]  HWANG Y H, KIM D G, AHN Y T, et al. Fate of nitrogen species in
            径、比表面积和 nZVI 含量的 Fe/C 复合材料。粒径和                         nitrate reduction by nanoscale zero valent iron and characterization
                                                                   of the reaction kinetics[J]. Water Science & Technology, 2010, 61(3):
            nZVI 含量的大 小顺 序为 : Fe/C-pH2<Fe/C-pH4<                   705-712.
            Fe/C-pH6<Fe/C-pH8<Fe/C-pH10。比表面积的大小顺序              [14]  PHENRAT  T, FAGERLUND F, ILLANGASEKARE  T,  et al.
                                                                                0
                                                                   Polymer-modified Fe  nanoparticles target entrapped NAPL in two
            为:Fe/C-pH2>Fe/C-pH4>Fe/C-pH6>Fe/C-pH8>Fe/C-pH10。
                                                                   dimensional porous  media:  Effect of  particle concentration, NAPL
                (2)通过对生成的氯离子进行离子色谱检测可                              saturation, and injection strategy[J]. Environmental Science  &
            知,Fe/C 复合材料对 TCE 的降解速率大小顺序为:                           Technology, 2011, 45(14): 6102-6109.
                                                               [15]  HE F, ZHAO D  Y, PAUL C. Field assessment of carboxymethyl
            Fe/C-pH10>Fe/C-pH8>Fe/C-pH6>Fe/C-pH4>Fe/C-pH2。         cellulose stabilized iron nanoparticles for  in situ destruction of
            在反应 48 h 时,Fe/C-pH10 对 TCE 的去除率可达                      chlorinated solvents in source zones[J]. Water Research, 2010, 44(7):
                                                                   2360-2370.
            100%。
                                                               [16]  SU C, PULS R  W, KRUG T A,  et al. A two and half-year-
                (3)对 Fe/C-pH10 进行球磨处理后发现,球磨                        performance evaluation of a field  test  on treatment of source zone
            后产物 Fe/C-pH10-Q 具有和 Fe/C-pH10 相似的 nZVI                 tetrachloroethene and its chlorinated daughter products using emulsified
                                                                   zero valent iron  nanoparticles[J]. Water Research, 2012, 46(16):
            分散性、粒径、含量和降解 TCE 活性,且 Fe/C-pH10-Q                      5071-5084.
            具有良好的地下传输性能,适用于对地下水中 TCE                           [17]  MASCIANGIOLI T, ZHANG W X. Environmental technologies at
                                                                   the nanoscale[J]. Environmental Science & Technology, 2003, 37(5):
            的去除,具有一定的实用价值。
                                                                   102A-108A.
                                                               [18]  LI F, VIPULANANDAN C, MOHANTY K K. Microemulsion and
            参考文献                                                   solution approaches to nanoparticle iron production for degradation
            [1]   SUN R L (孙瑞玲),YUE Y L (岳永丽), ZHANG G Z (张国祯), et al.   of trichloroethylene[J]. Colloids & Surfaces A Physicochemical &
                 Study on the chlorinated hydrocarbon of PM2.5 samples with the aid   Engineering Aspects, 2003, 223(1): 103-112.
                 of principal component analysis[J]. Environmental Science &   [19]  SHERMAN P,DARAB J G, MALLOUK T E. Remediation of Cr(Ⅵ)
                 Technology, 2020, 43(5): 88-93.                   and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent
            [2]   REN F (任斐), JIN H M (金红梅),  WANG R T (王茹婷),  et al.   iron[J]. Environmental Science & Technology, 2000, 34(12):
                 Carcinogenicity of trichloroethylene[J]. Journal  of Environmental   2564-2569.
                 and Occupational Medicine (环境与职业医学), 2018, 35(1): 1-4.   [20]  LI S P, LIU P, DU X M. A field pilot test for chlorohydrocarbon
            [3]   MCLAREN R G, SUDICKY E A, PARK Y, et al. Numerical simulation   contaminated groundwater by using  ZVI and controlled releasing
                 of DNAPL  emissions and remediation in a fractured dolomitic   carbon material[J]. Water Science and Technology, 2013, 19: 134-
                 aquifer[J]. Journal of Contaminant Hydrology, 2012, 136/137: 56-71.   138.
            [4]   LI Z (李哲). Study on remediation mechanism of trichloroethylene   [21]  WU X, YANG Q, XU D, et al. Simultaneous adsorption/reduction of
                 and typical antibiotics in  groundwater by advanced  oxidation   bromate by nanoscale zerovalent iron supported on modified activated
                 technology[D] Beijing: China University of Geosciences (Beijing)  carbon[J]. Industrial & Engineering Chemistry Research, 2013,
                 〔中国地质大学(北京)〕, 2019.                               52(35): 12574-12581.
            [5]   CHEN F (陈帆). Study on the efficiency and mechanism of cathode   [22]  SANG W X (桑伟璇), CHEN R (陈蓉), LI X  Y (李小燕),  et al.
                 biological dechlorination promoted by sulfur autotrophic denitrification   Study on removal  of U(Ⅵ) from aqueous solution by cornstarch-
                 process[D]. Harbin:Harbin Institute of Technology (哈尔滨工业大  loaded nanoscale zero-valent iron[J] Nonferrous Metals (Extractive
                 学), 2020.                                         Metallurgy) (有色金属:  冶炼部分), 2020, (8): 92-98.
            [6]   HAN Y T (韩奕彤). Study on the reactivity, toxicity and migration of           (下转第 827 页)
   177   178   179   180   181   182   183   184   185   186   187