Page 149 - 《精细化工》2022年第5期
P. 149

第 5 期                 李   顺,等:  表面磷酸化 CeO 2 选择性还原 NO 及其碱金属耐受性                           ·1003·


            提高 Ce 物种的还原性并产生更多的化学吸附氧。当                              Journal of Hazardous Materials, 2021, 402: 123551.
                                               +
              +
            K 沉积在磷酸化 CeO 2 催化剂上时,K 将被诱导迁                       [13]  DU X S, GAO X, QU R Y, et al. The influence of alkali metals on
                                                                   the Ce-Ti mixed oxide catalyst for the selective catalytic reduction of
                                                     4+
                                             +
            移到表面与磷酸盐结合,从而阻止 K 攻击 Ce 活性                             NO x[J]. ChemCatChem, 2012, 4(12): 2075-2081.
                                 +
            位点,并显著提高抗 K 活性。根据 NH 3 -TPD 和原                     [14]  JI J W, JING M Z, WANG X W, et al. Activating low-temperature
                                                                   NH 3-SCR catalyst by breaking the strong interface between acid and
            位红外结果可知,磷酸改性能够增强催化剂表面原                                 redox sites: A case of model Ce 2(SO 4) 3-CeO 2 study[J]. Journal of
            有的 Lewis 酸位点数量,并形成新的 Brønsted 酸位                       Catalysis, 2021, 39: 212-223.
                                     +                         [15]  HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of
            点。保证了磷酸化 CeO 2 在 K 中毒后仍然保持对 NH 3
                                                                   NO x with NH 3 by using novel catalysts: State of the art and future
            的吸附能力。CeO 2 催化剂在吸附 NO 后产生惰性硝                           prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976.
            酸盐,惰性硝酸盐不和吸附的 NH 3 物种反应,然后                         [16]  WANG W, XIONG Z B, HE W F,  et al. Influence of thiourea
                                                                   modification on the NH 3-SCR activity of CeO 2: Simultaneous tuning
            沉积于表面,导致反应路径被切断,阻碍 NH 3 -SCR                           morphology and  surface acidity[J]. Journal  of the Energy Institute,
            反应。NH 3 -SCR 在 CeO 2 催化剂上以 E-R 机制进行,                   2021, 98: 322-333.
                                                               [17]  YI T, ZHANG Y B, LI J W, et al. Promotional effect of H 3PO 4 on
            NH 3 -SCR 反应在 CeP 0.05 上的机理是 L-H 机理。此外,
                                                                   ceria  catalyst for selective  catalytic reduction of NO by NH 3[J].
              +
            K 的添加没有改变催化剂的反应机理。磷酸化 CeO 2                            Chinese Journal of Catalysis, 2016, 37(2): 300-307.
            表现出优异的脱硝性能,有希望成为取代 V 2 O 5 -                       [18]  LI M Y, GUO R T, HU C  X,  et al. The enhanced resistance to K
                                                                   deactivation of  Ce/TiO 2 catalyst for NH 3-SCR reaction by the
            WO 3 (MoO 3 )/TiO 2 的高效、耐碱、耐硫的工业脱硝催                    modification with P[J]. Applied Surface Science, 2018, 436: 814-822.
            化剂。                                                [19]  ZHANG P, WANG P L, CHEN A L, et al. Alkali-resistant catalytic
                                                                   reduction of NO x by using Ce — O — B alkali-capture sites[J].
            参考文献:                                                  Environmental Science & Technology, 2021, 55(17): 11970-11978.
                                                               [20]  GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization
            [1]   LIU X G (刘晓刚), FEI H T (费浩天), LIU Y Q (刘奕绮),  et al.   of CeO 2-TiO 2 catalysts prepared by the sol-gel method for selective
                 Denitrification performance of Cu(x)/TiO 2 catalysts for selective   catalytic reduction of NO with NH 3[J]. Journal  of Hazardous
                 catalytic reduction of NO with NH 3 at low temperature[J]. Fine   Materials, 2010, 174(1/2/3): 734-739.
                 Chemicals (精细化工), 2019, 36(9): 1845-1849.     [21]  MA S Y, GAO W Q, YANG Z D, et al. Superior Ce—Nb—Ti oxide
            [2]   GAO Z H (高梓寒), MU  Y (穆杨),  YANG R N (杨润农),  et al.   catalysts for selective catalytic reduction of NO with NH 3[J]. Journal
                 NH 3-SCR denitrification performance  over bimetal  exchanged Cu-   of the Energy Institute, 2021, 94: 73-84.
                 Mn/SSZ-39 catalyst[J]. Fine Chemicals (精细化工), 2021, 38(8):   [22]  ZHOU G Y, MAITARAD P, WANG P L, et al. Alkali-resistant NO x
                 1621-1627, 1692.                                  reduction over SCR catalysts via boosting NH 3 adsorption rates by in
            [3]   LIU X S, JIANG P, CHEN Y, et al. A basic comprehensive study on   situ constructing the sacrificed sites[J]. Environmental Science &
                 synergetic effects among the metal oxides in CeO 2-WO 3/TiO 2 NH 3-   Technology, 2020, 54(20): 13314-13321.
                 SCR catalyst[J]. Chemical Engineering Journal, 2021, 421: 127833.   [23]  ZHANG Z P, LI R, WANG M J, et al. Two steps synthesis of CeTiO x
            [4]   GRANGER P, SIAKA H W, UMBARKAR S B. What news in the   oxides nanotube catalyst: Enhanced activity, resistance of SO 2 and
                 surface  chemistry of bulk and supported vanadia based SCR-   H 2O for low temperature NH 3-SCR of NO x[J]. Applied Catalysis B:
                 catalysts: Improvements in their resistance to poisoning and thermal   Environmental, 2021, 282: 119542.
                 sintering[J]. Chemical Record, 2019, 19(9): 1813-1828.   [24]  JIANG Y, GAO W Q, BAO C Z, et al. Comparative study of Ce—
            [5]   GUO  Y Y, XU X  F, GAO  H,  et al.  Ca-poisoning effect on V 2O 5-   Nb—Ti oxide catalysts prepared by different methods for selective
                 WO 3/TiO 2 and  V 2O 5-WO 3-CeO 2/TiO 2 catalysts with different   catalytic reduction of NO with NH 3[J]. Molecular Catalysis, 2020,
                 vanadium loading[J]. Catalysts, 2021, 11(4): 445.   496: 111161.
            [6]   ZHOU Y H, REN S, YANG J, et al. NH 3 treatment of CeO 2 nanorods   [25]  LIU Q, MI J X, CHEN X P, et al. Effects of phosphorus modification
                 catalyst for improving NH 3-SCR of NO[J]. Journal of the Energy   on the catalytic properties and performance of CuCeZr mixed metal
                 Institute, 2021, 98: 199-205.                     catalyst for simultaneous removal of CO and NO x[J]. Chemical
            [7]   GENG Y, JIN K, MEI J, et al. CeO 2 grafted with different heteropoly   Engineering Journal, 2021, 423: 130228.
                 acids for selective catalytic reduction of NO x with NH 3[J]. Journal of   [26]  WANG J P, YAN Z, LIU L L, et al. In situ DRIFTS investigation on
                 Hazardous Materials, 2020, 382: 121032.           the SCR of NO with NH 3 over V 2O 5 catalyst supported by activated
            [8]   FANG D, HE F,  XIE J L.  Characterization and performance of   semi-coke[J]. Applied Surface Science, 2014, 313: 660-669.
                 common alkali  metals and alkaline earth metals loaded Mn/TiO 2   [27]  LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO 3 on
                 catalysts for NO x removal with NH 3[J]. Journal of  the Energy   the NO x reduction by NH 3 over CeO 2/TiO 2 catalyst studied with in
                 Institute, 2019, 92(2): 319-331.                  situ DRIFTS[J]. Applied Catalysis B: Environmental, 2014, 144: 90-95.
            [9]   ZHU N, SHAN W, SHAN Y L, et al. Effects of alkali and alkaline   [28]  MA  L, CHENG Y S,  CAVATAIO  G,  et al.  In situ DRIFTS and
                 earth  metals on Cu-SSZ-39 catalyst for the selective  catalytic   temperature-programmed technology study on NH 3-SCR of NO x
                 reduction of NO x with NH 3[J]. Chemical Engineering Journal, 2020,   over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B:
                 388: 124250.                                      Environmental, 2014, 156/157: 428-437.
            [10]  ZHOU Z Z, LAN J M, LIU L Y, et al. Enhanced alkali resistance of   [29]  ZHANG Y P, YUE X P, HUANG T J, et al. In situ DRIFTS studies
                 sulfated CeO 2 catalyst for the reduction of NO x from biomass fired   of NH 3-SCR mechanism over V 2O 5-CeO 2/TiO 2-ZrO 2  catalysts for
                 flue gas[J]. Catalysis Communications, 2021, 149:106230.   selective catalytic reduction of NO x[J]. Materials, 2018, 11(8): 1307.
            [11]  CAI S X, XU T  Y,  WANG P  L,  et al. Self-protected CeO 2-   [30]  YU Y K, WANG J X, CHEN J S, et al. Promotive effect of SO 2 on
                       2–
                 SnO 2@SO 4 /TiO 2 catalysts with extraordinary resistance to alkali and   the activity of a deactivated commercial selective catalytic reduction
                 heavy  metals for NO x reduction[J]. Environmental Science &   catalyst: An  in situ DRIFTS  study[J]. Industrial & Engineering
                 Technology, 2020, 54(19): 12752-12760.            Chemistry Research, 2014, 53(42): 16229-16234.
            [12]  KANG K K, YAO X J, CAO J, et al. Enhancing the K resistance of
                 CeTiO x  catalyst in NH 3-SCR reaction by CuO  modification[J].             (下转第 1053 页)
   144   145   146   147   148   149   150   151   152   153   154