Page 149 - 《精细化工》2022年第5期
P. 149
第 5 期 李 顺,等: 表面磷酸化 CeO 2 选择性还原 NO 及其碱金属耐受性 ·1003·
提高 Ce 物种的还原性并产生更多的化学吸附氧。当 Journal of Hazardous Materials, 2021, 402: 123551.
+
+
K 沉积在磷酸化 CeO 2 催化剂上时,K 将被诱导迁 [13] DU X S, GAO X, QU R Y, et al. The influence of alkali metals on
the Ce-Ti mixed oxide catalyst for the selective catalytic reduction of
4+
+
移到表面与磷酸盐结合,从而阻止 K 攻击 Ce 活性 NO x[J]. ChemCatChem, 2012, 4(12): 2075-2081.
+
位点,并显著提高抗 K 活性。根据 NH 3 -TPD 和原 [14] JI J W, JING M Z, WANG X W, et al. Activating low-temperature
NH 3-SCR catalyst by breaking the strong interface between acid and
位红外结果可知,磷酸改性能够增强催化剂表面原 redox sites: A case of model Ce 2(SO 4) 3-CeO 2 study[J]. Journal of
有的 Lewis 酸位点数量,并形成新的 Brønsted 酸位 Catalysis, 2021, 39: 212-223.
+ [15] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of
点。保证了磷酸化 CeO 2 在 K 中毒后仍然保持对 NH 3
NO x with NH 3 by using novel catalysts: State of the art and future
的吸附能力。CeO 2 催化剂在吸附 NO 后产生惰性硝 prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976.
酸盐,惰性硝酸盐不和吸附的 NH 3 物种反应,然后 [16] WANG W, XIONG Z B, HE W F, et al. Influence of thiourea
modification on the NH 3-SCR activity of CeO 2: Simultaneous tuning
沉积于表面,导致反应路径被切断,阻碍 NH 3 -SCR morphology and surface acidity[J]. Journal of the Energy Institute,
反应。NH 3 -SCR 在 CeO 2 催化剂上以 E-R 机制进行, 2021, 98: 322-333.
[17] YI T, ZHANG Y B, LI J W, et al. Promotional effect of H 3PO 4 on
NH 3 -SCR 反应在 CeP 0.05 上的机理是 L-H 机理。此外,
ceria catalyst for selective catalytic reduction of NO by NH 3[J].
+
K 的添加没有改变催化剂的反应机理。磷酸化 CeO 2 Chinese Journal of Catalysis, 2016, 37(2): 300-307.
表现出优异的脱硝性能,有希望成为取代 V 2 O 5 - [18] LI M Y, GUO R T, HU C X, et al. The enhanced resistance to K
deactivation of Ce/TiO 2 catalyst for NH 3-SCR reaction by the
WO 3 (MoO 3 )/TiO 2 的高效、耐碱、耐硫的工业脱硝催 modification with P[J]. Applied Surface Science, 2018, 436: 814-822.
化剂。 [19] ZHANG P, WANG P L, CHEN A L, et al. Alkali-resistant catalytic
reduction of NO x by using Ce — O — B alkali-capture sites[J].
参考文献: Environmental Science & Technology, 2021, 55(17): 11970-11978.
[20] GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization
[1] LIU X G (刘晓刚), FEI H T (费浩天), LIU Y Q (刘奕绮), et al. of CeO 2-TiO 2 catalysts prepared by the sol-gel method for selective
Denitrification performance of Cu(x)/TiO 2 catalysts for selective catalytic reduction of NO with NH 3[J]. Journal of Hazardous
catalytic reduction of NO with NH 3 at low temperature[J]. Fine Materials, 2010, 174(1/2/3): 734-739.
Chemicals (精细化工), 2019, 36(9): 1845-1849. [21] MA S Y, GAO W Q, YANG Z D, et al. Superior Ce—Nb—Ti oxide
[2] GAO Z H (高梓寒), MU Y (穆杨), YANG R N (杨润农), et al. catalysts for selective catalytic reduction of NO with NH 3[J]. Journal
NH 3-SCR denitrification performance over bimetal exchanged Cu- of the Energy Institute, 2021, 94: 73-84.
Mn/SSZ-39 catalyst[J]. Fine Chemicals (精细化工), 2021, 38(8): [22] ZHOU G Y, MAITARAD P, WANG P L, et al. Alkali-resistant NO x
1621-1627, 1692. reduction over SCR catalysts via boosting NH 3 adsorption rates by in
[3] LIU X S, JIANG P, CHEN Y, et al. A basic comprehensive study on situ constructing the sacrificed sites[J]. Environmental Science &
synergetic effects among the metal oxides in CeO 2-WO 3/TiO 2 NH 3- Technology, 2020, 54(20): 13314-13321.
SCR catalyst[J]. Chemical Engineering Journal, 2021, 421: 127833. [23] ZHANG Z P, LI R, WANG M J, et al. Two steps synthesis of CeTiO x
[4] GRANGER P, SIAKA H W, UMBARKAR S B. What news in the oxides nanotube catalyst: Enhanced activity, resistance of SO 2 and
surface chemistry of bulk and supported vanadia based SCR- H 2O for low temperature NH 3-SCR of NO x[J]. Applied Catalysis B:
catalysts: Improvements in their resistance to poisoning and thermal Environmental, 2021, 282: 119542.
sintering[J]. Chemical Record, 2019, 19(9): 1813-1828. [24] JIANG Y, GAO W Q, BAO C Z, et al. Comparative study of Ce—
[5] GUO Y Y, XU X F, GAO H, et al. Ca-poisoning effect on V 2O 5- Nb—Ti oxide catalysts prepared by different methods for selective
WO 3/TiO 2 and V 2O 5-WO 3-CeO 2/TiO 2 catalysts with different catalytic reduction of NO with NH 3[J]. Molecular Catalysis, 2020,
vanadium loading[J]. Catalysts, 2021, 11(4): 445. 496: 111161.
[6] ZHOU Y H, REN S, YANG J, et al. NH 3 treatment of CeO 2 nanorods [25] LIU Q, MI J X, CHEN X P, et al. Effects of phosphorus modification
catalyst for improving NH 3-SCR of NO[J]. Journal of the Energy on the catalytic properties and performance of CuCeZr mixed metal
Institute, 2021, 98: 199-205. catalyst for simultaneous removal of CO and NO x[J]. Chemical
[7] GENG Y, JIN K, MEI J, et al. CeO 2 grafted with different heteropoly Engineering Journal, 2021, 423: 130228.
acids for selective catalytic reduction of NO x with NH 3[J]. Journal of [26] WANG J P, YAN Z, LIU L L, et al. In situ DRIFTS investigation on
Hazardous Materials, 2020, 382: 121032. the SCR of NO with NH 3 over V 2O 5 catalyst supported by activated
[8] FANG D, HE F, XIE J L. Characterization and performance of semi-coke[J]. Applied Surface Science, 2014, 313: 660-669.
common alkali metals and alkaline earth metals loaded Mn/TiO 2 [27] LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO 3 on
catalysts for NO x removal with NH 3[J]. Journal of the Energy the NO x reduction by NH 3 over CeO 2/TiO 2 catalyst studied with in
Institute, 2019, 92(2): 319-331. situ DRIFTS[J]. Applied Catalysis B: Environmental, 2014, 144: 90-95.
[9] ZHU N, SHAN W, SHAN Y L, et al. Effects of alkali and alkaline [28] MA L, CHENG Y S, CAVATAIO G, et al. In situ DRIFTS and
earth metals on Cu-SSZ-39 catalyst for the selective catalytic temperature-programmed technology study on NH 3-SCR of NO x
reduction of NO x with NH 3[J]. Chemical Engineering Journal, 2020, over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B:
388: 124250. Environmental, 2014, 156/157: 428-437.
[10] ZHOU Z Z, LAN J M, LIU L Y, et al. Enhanced alkali resistance of [29] ZHANG Y P, YUE X P, HUANG T J, et al. In situ DRIFTS studies
sulfated CeO 2 catalyst for the reduction of NO x from biomass fired of NH 3-SCR mechanism over V 2O 5-CeO 2/TiO 2-ZrO 2 catalysts for
flue gas[J]. Catalysis Communications, 2021, 149:106230. selective catalytic reduction of NO x[J]. Materials, 2018, 11(8): 1307.
[11] CAI S X, XU T Y, WANG P L, et al. Self-protected CeO 2- [30] YU Y K, WANG J X, CHEN J S, et al. Promotive effect of SO 2 on
2–
SnO 2@SO 4 /TiO 2 catalysts with extraordinary resistance to alkali and the activity of a deactivated commercial selective catalytic reduction
heavy metals for NO x reduction[J]. Environmental Science & catalyst: An in situ DRIFTS study[J]. Industrial & Engineering
Technology, 2020, 54(19): 12752-12760. Chemistry Research, 2014, 53(42): 16229-16234.
[12] KANG K K, YAO X J, CAO J, et al. Enhancing the K resistance of
CeTiO x catalyst in NH 3-SCR reaction by CuO modification[J]. (下转第 1053 页)