Page 43 - 《精细化工》2022年第5期
P. 43
第 5 期 张群利,等: 再生纤维素/壳聚糖/银纳米线抗菌复合膜的制备及性能 ·897·
表 4 RGC/CS/AgNW 抗菌复合膜的抑菌性能 plant essential oil/palygorskite antibacterial composites[J]. Fine
Table 4 Antibacterial properties of RGC/CS/AgNW antibacterial Chemicals (精细化工), 2021, 38(10): 2019-2024, 2033.
composite film [7] WANG L L (王丽莉), OUYANG T L (欧阳土龙), DAI X X (戴兴兴),
et al. Preparation of transparent cellulose membrane by hydrogen
试样 抑菌圈直径/mm
peroxide bleaching of cellulose-rich materials[J]. Forest Engineering
RGC — (森林工程), 2018, 34(1): 41-45, 59.
RGC/CS 7.13±0.08 [8] BAO W Y (鲍文毅), XU C (徐晨), SONG F (宋飞), et al. Preparation
and properties of cellulose/chitosan transparent films[J]. Acta Polymerica
复合膜 1 11.12±0.08
Sinica (高分子学报), 2015, (1): 49-56.
复合膜 2 12.33±0.09 [9] LIU Z M (刘忠明), DONG F (董峰), WANG X L (王小林), et al.
复合膜 3 13.07±0.10 Preparation and properties of nanocrystalline cellulose/chitosan
注:“—”代表无抑菌性。 composite films[J]. Packaging Engineering ( 包装工 程 ), 2016,
37(17): 75-79.
[10] LI G J (李桂娟),XIA W (夏伟),LUO H X (罗海希), et al.
3 结论 Properties and in vitro cell compatibility of NCW-CS/PVA composite
membranes[J]. Chemical Industry and Engineering Progress (化工进
(1)利用还原法制备具有较高长径比的银纳米 展), 2020, 39(1): 356-364.
[11] ZHOU H M, TONG H, LU J, et al. Preparation of bio-based
线(AgNW),XRD 表征发现,AgNW(111)晶面 cellulose acetate/chitosan composite film with oxygen and water
生长速度比其他方向生长速度快,SEM 表征发现, resistant properties[J]. Carbohydrate Polymers, 2021, 270: 118381.
AgNW 直径约为 75 nm,长度为 20~30 μm。 [12] HONG F (洪帆), SONG J (宋洁), BAI J (白洁), et al. Research
progress on functional modification of bacterial cellulose[J]. Fine
(2)以 1-丁基-3-甲基咪唑氯盐([Bmim]Cl)为 Chemicals (精细化工), 2021, 38(12): 2377-2384.
溶剂体系,通过纤维素溶解再生制备再生纤维素基 [13] WAN J Q, DIAO H L, YU J, et al. A biaxially stretched cellulose
film prepared from ionic liquid solution[J]. Carbohydrate Polymers,
膜,将银纳米线溶于壳聚糖中,再将壳聚糖-银纳米
2021, 260: 117816.
线共混液包覆于再生纤维素基膜表面制备 RGC/CS/ [14] XIE Y Y (谢妍妍), CAI Y (柴云), ZHANG P Y (张普玉). Study on
AgNW 抗菌复合膜。FTIR、XRD、SEM 表征表明, dissolving cellulose by ionic liquids[J]. Chemical Bulletin (化学通
报), 2020, 83(12): 1104-1112.
壳聚糖-银纳米线成功包覆于再生纤维素基膜表面; [15] CHEN P Q (陈蓓秋), LIN C X (林春香), LIU Y F (刘以凡), et al.
TG 分析表明,抗菌复合膜比基膜热稳定性提高。 Application of ionic liquid in preparation of nanocellulose[J]. CIESC
(3)对 RGC/CS/AgNW 抗菌复合膜力学、光学、 Journal (化工学报), 2020, 71(3): 903-913.
[16] WU Z S (吴宗山), HU H Y (胡海洋), REN Y (任艺), et al. Progress
阻隔、抑菌性能进行了评价。抗菌复合膜力学性能 of antibacterial mechanisms of silver nanoparticles[J]. Chemical Industry
显著提高,AgNW 添加量为 0.5%的复合膜的拉伸强 and Engineering Progress (化工进展), 2015, 34(5): 1349-1356, 1370.
度相对 RGC 基膜提升了 12.2%,断裂伸长率提升了 [17] PREMA P, THANGAPANDIYAN S, IMMANUEL G. CMC stabilized
nano silver synthesis, characterization and its antibacterial and
48.6%;透明度略有下降,透光率仍高达 89.82%; synergistic effect with broad spectrum antibiotics[J]. Carbohydrate
氧气透过率下降了 86.7%;同时对大肠杆菌具有良 Polymers, 2017, 158(2): 141-148.
好的抑菌作用。制得的 RGC/CS/AgNW 抗菌复合膜 [18] WANG C L (王春莉), CHEN Z Q (陈忠琴), XU L L (徐蕾蕾), et al.
Green synthesis of silver nanoparticles with aqueous Folium Mori
具有良好的力学性能、光学性能、阻隔性能和抑菌性 extracts and their antimicrobial and anticancer activities[J]. Fine
能,对绿色抗菌包装材料制备具有很好的参考意义。 Chemicals (精细化工), 2021, 38(1): 130-137.
[19] BAHAREH K, HAMID R G. Synthesis of silver nanoparticles with
参考文献: different shapes[J]. Arabian Journal of Chemistry, 2009, (12):
1823-1838.
[1] SUN Z B (孙振炳), LI X B (李晓宝), YAO Y (姚曜), et al. [20] RICHARD S J, ROGER R D, MARTA R. Silver nanowires:
Preparation and application of bacterial cellulose antibacterial Synthesis, antibacterial activity and biomedical applications[J]. Applied
composite material[J]. Packaging Engineering (包装工程), 2021, Sciences, 2018, (8): 673-688.
42(13): 21-28. [21] LEI J, ZHOU L, TANG Y J, et al. High-strength konjac
[2] CHANTEREAU G, BROWN N, DOURGES M A, et al. Silylation of glucomannan/silver nanowires composite films with antibacterial
bacterial cellulose to design membranes with intrinsic anti-bacterial properties[J]. Materials, 2017, (10): 524-534.
properties[J]. Carbohydrate Polymers, 2019, 220: 71-78. [22] HUGO S, AURORE D, DAVIDE D, et al. Cellulose nanofibrils and
[3] WU Y H, LUO X G, LI W, et al. Green and biodegradable composite silver nanowires active coatings for the development of antibacterial
films with novel antimicrobial performance based on cellulose[J]. packaging surfaces[J]. Carbohydrate Polymers, 2020, 240: 116305.
Food Chemistry, 2016, 197(4): 250-256. [23] KIRAN S, WU L, GE X S, et al. Preparation and characterization of
[4] BIAN N Y, YANG X L, ZHANG X L, et al. A complex of oxidised bio-based hybrid film containingchitosan and silver nanowires[J].
chitosan and silver ions grafted to cotton fibres with bacteriostatic Carbohydrate Polymers, 2016, 137: 732-738.
properties[J]. Carbohydrate Polymers, 2021, 262: 117714. [24] SUN Y G, BRIAN M, THURSTION H, et al. Polyol synthesis of
[5] CUI S (崔升), YUAN M Y (袁美玉), FU J J (付俊杰), et al. Research uniform silver nanowires: A plausible growth mechanism and the
progress of chitosan and its metal particle composite materials for supporting evidence[J]. Nano Letters, 2003, 3(7): 955-960.
antibacterial application[J]. Fine Chemicals (精细化工), 2021, 38(9): [25] YANG P P (杨萍萍), GUO S Q (郭思琪), HOU W F (侯温甫), et al.
1757-1764, 1778. Antibacterial of ε-poly-L-lysine/polyvinyl alcohol composite film
[6] HUI A P (惠爱平), YANG F F (杨芳芳), KANG Y R (康玉茹), et al. and its preservation effect on fresh duck meat[J]. Modern Food
High pressure homogenization assisted fabrication of CTAB modified Science and Technology (现代食品科技), 2020, 36(3): 113-119, 98.