Page 43 - 《精细化工》2022年第5期
P. 43

第 5 期                 张群利,等:  再生纤维素/壳聚糖/银纳米线抗菌复合膜的制备及性能                                  ·897·


                 表 4  RGC/CS/AgNW 抗菌复合膜的抑菌性能                       plant essential oil/palygorskite antibacterial  composites[J]. Fine
            Table 4    Antibacterial properties of RGC/CS/AgNW antibacterial   Chemicals (精细化工), 2021, 38(10): 2019-2024, 2033.
                   composite film                              [7]   WANG L L (王丽莉), OUYANG T L (欧阳土龙), DAI X X (戴兴兴),
                                                                   et al. Preparation of transparent cellulose membrane by hydrogen
                      试样                 抑菌圈直径/mm
                                                                   peroxide bleaching of cellulose-rich materials[J]. Forest Engineering
                   RGC                        —                    (森林工程), 2018, 34(1): 41-45, 59.
                   RGC/CS                   7.13±0.08          [8]   BAO W Y (鲍文毅), XU C (徐晨), SONG F (宋飞), et al. Preparation
                                                                   and properties of cellulose/chitosan transparent films[J]. Acta Polymerica
                   复合膜 1                   11.12±0.08
                                                                   Sinica (高分子学报), 2015, (1): 49-56.
                   复合膜 2                   12.33±0.09          [9]   LIU Z M (刘忠明), DONG F (董峰), WANG X L (王小林), et al.
                   复合膜 3                   13.07±0.10              Preparation and properties of nanocrystalline cellulose/chitosan
                 注:“—”代表无抑菌性。                                      composite  films[J]. Packaging Engineering ( 包装工 程 ), 2016,
                                                                   37(17): 75-79.
                                                               [10]  LI G J (李桂娟),XIA W (夏伟),LUO H X (罗海希),  et al.
            3   结论                                                 Properties and in vitro cell compatibility of NCW-CS/PVA composite
                                                                   membranes[J]. Chemical Industry and Engineering Progress (化工进
                (1)利用还原法制备具有较高长径比的银纳米                              展), 2020, 39(1): 356-364.
                                                               [11]  ZHOU H M, TONG H, LU J,  et al. Preparation of bio-based
            线(AgNW),XRD 表征发现,AgNW(111)晶面                           cellulose acetate/chitosan composite film with oxygen and water
            生长速度比其他方向生长速度快,SEM 表征发现,                               resistant properties[J]. Carbohydrate Polymers, 2021, 270: 118381.
            AgNW 直径约为 75 nm,长度为 20~30 μm。                      [12]  HONG F (洪帆),  SONG J (宋洁), BAI J (白洁),  et al. Research
                                                                   progress on functional modification of bacterial cellulose[J]. Fine
                (2)以 1-丁基-3-甲基咪唑氯盐([Bmim]Cl)为                      Chemicals (精细化工), 2021, 38(12): 2377-2384.
            溶剂体系,通过纤维素溶解再生制备再生纤维素基                             [13]  WAN J Q, DIAO H L, YU J, et al. A biaxially stretched cellulose
                                                                   film prepared from ionic liquid solution[J]. Carbohydrate Polymers,
            膜,将银纳米线溶于壳聚糖中,再将壳聚糖-银纳米
                                                                   2021, 260: 117816.
            线共混液包覆于再生纤维素基膜表面制备 RGC/CS/                         [14]  XIE Y Y (谢妍妍), CAI Y (柴云), ZHANG P Y (张普玉). Study on
            AgNW 抗菌复合膜。FTIR、XRD、SEM 表征表明,                          dissolving cellulose by ionic liquids[J]. Chemical  Bulletin (化学通
                                                                   报), 2020, 83(12): 1104-1112.
            壳聚糖-银纳米线成功包覆于再生纤维素基膜表面;                            [15]  CHEN P Q (陈蓓秋), LIN C X (林春香), LIU Y F (刘以凡), et al.
            TG 分析表明,抗菌复合膜比基膜热稳定性提高。                                Application of ionic liquid in preparation of nanocellulose[J]. CIESC
                (3)对 RGC/CS/AgNW 抗菌复合膜力学、光学、                       Journal (化工学报), 2020, 71(3): 903-913.
                                                               [16]  WU Z S (吴宗山), HU H Y (胡海洋), REN Y (任艺), et al. Progress
            阻隔、抑菌性能进行了评价。抗菌复合膜力学性能                                 of antibacterial mechanisms of silver nanoparticles[J]. Chemical Industry
            显著提高,AgNW 添加量为 0.5%的复合膜的拉伸强                            and Engineering Progress (化工进展), 2015, 34(5): 1349-1356, 1370.
            度相对 RGC 基膜提升了 12.2%,断裂伸长率提升了                       [17]  PREMA P, THANGAPANDIYAN S, IMMANUEL G. CMC stabilized
                                                                   nano silver synthesis, characterization and its antibacterial and
            48.6%;透明度略有下降,透光率仍高达 89.82%;                           synergistic effect with broad spectrum antibiotics[J]. Carbohydrate
            氧气透过率下降了 86.7%;同时对大肠杆菌具有良                              Polymers, 2017, 158(2): 141-148.
            好的抑菌作用。制得的 RGC/CS/AgNW 抗菌复合膜                       [18]  WANG C L (王春莉), CHEN Z Q (陈忠琴), XU L L (徐蕾蕾), et al.
                                                                   Green synthesis of silver nanoparticles with aqueous  Folium Mori
            具有良好的力学性能、光学性能、阻隔性能和抑菌性                                extracts and their antimicrobial and anticancer  activities[J]. Fine
            能,对绿色抗菌包装材料制备具有很好的参考意义。                                Chemicals (精细化工), 2021, 38(1): 130-137.
                                                               [19]  BAHAREH K, HAMID R G. Synthesis of silver nanoparticles with
            参考文献:                                                  different shapes[J].  Arabian Journal of Chemistry, 2009, (12):
                                                                   1823-1838.
            [1]   SUN Z B (孙振炳), LI X B (李晓宝), YAO  Y (姚曜), et al.   [20]  RICHARD S J,  ROGER R D, MARTA  R. Silver nanowires:
                 Preparation and application  of  bacterial cellulose antibacterial   Synthesis, antibacterial activity and biomedical applications[J]. Applied
                 composite material[J]. Packaging Engineering (包装工程), 2021,   Sciences, 2018, (8): 673-688.
                 42(13): 21-28.                                [21]  LEI J, ZHOU L, TANG Y J,  et al. High-strength konjac
            [2]   CHANTEREAU G, BROWN N, DOURGES M A, et al. Silylation of   glucomannan/silver nanowires composite films with antibacterial
                 bacterial cellulose to design membranes with intrinsic anti-bacterial   properties[J]. Materials, 2017, (10): 524-534.
                 properties[J]. Carbohydrate Polymers, 2019, 220: 71-78.   [22]  HUGO S, AURORE D, DAVIDE D, et al. Cellulose nanofibrils and
            [3]   WU Y H, LUO X G, LI W, et al. Green and biodegradable composite   silver nanowires active coatings for the development of antibacterial
                 films with novel antimicrobial performance based on cellulose[J].   packaging surfaces[J]. Carbohydrate Polymers, 2020, 240: 116305.
                 Food Chemistry, 2016, 197(4): 250-256.        [23]  KIRAN S, WU L, GE X S, et al. Preparation and characterization of
            [4]   BIAN N Y, YANG X L, ZHANG X L, et al. A complex of oxidised   bio-based  hybrid film containingchitosan and silver  nanowires[J].
                 chitosan and silver ions  grafted  to cotton  fibres with  bacteriostatic   Carbohydrate Polymers, 2016, 137: 732-738.
                 properties[J]. Carbohydrate Polymers, 2021, 262: 117714.   [24]  SUN Y G, BRIAN M,  THURSTION  H,  et al. Polyol synthesis of
            [5]   CUI S (崔升), YUAN M Y (袁美玉), FU J J (付俊杰), et al. Research   uniform silver nanowires: A plausible growth mechanism and the
                 progress of chitosan and its metal particle composite materials for   supporting evidence[J]. Nano Letters, 2003, 3(7): 955-960.
                 antibacterial application[J]. Fine Chemicals (精细化工), 2021, 38(9):   [25]  YANG P P (杨萍萍), GUO S Q (郭思琪), HOU W F (侯温甫), et al.
                 1757-1764, 1778.                                  Antibacterial of  ε-poly-L-lysine/polyvinyl alcohol composite film
            [6]   HUI A P (惠爱平), YANG F F (杨芳芳), KANG Y R (康玉茹), et al.   and its  preservation effect on fresh  duck meat[J].  Modern Food
                 High pressure homogenization assisted fabrication of CTAB modified   Science and Technology (现代食品科技), 2020, 36(3): 113-119, 98.
   38   39   40   41   42   43   44   45   46   47   48