Page 123 - 《精细化工》2022年第6期
P. 123

第 6 期                    黄秋容,等:  两相体系中生物转化肉桂醇生成天然 2-苯乙醇                                 ·1189·


                 2-phenylethanol in a biphasic system  with rapeseed oil[J]. New   and Development (食品研究与开发), 2020, 41(2): 128-134.
                 Biotechnology, 2018, 42: 56-61.               [18]  LEÓN R, FEMANDES P, PINHEIRO H M,  et al.  Whole-cell
            [14]  LU J (陆军), ZHANG W G (张伟国). Production of 2-phenylethylalcohol   biocatalysis in organic media[J]. Enzyme and Microbial Technology,
                 from L-phenylalanine by bioconversion in biphasic system[J]. Chemical   1998, 23(7/8): 483-500.
                 Industry and Engineering Progress (化工进展), 2008,  27(3): 417-   [19]  LAAN C, BOEREN S, VOS K, et al. Rules for the optimization of
                 420.                                              biocatalysis in organic solvents[J].  Biotechnology  and  Bioengineering,
            [15]  BENEDICT R L, SHUKE W, HENG J J S, et al. One-pot production   1987, 30(1): 81-87.
                 of natural 2-phenylethanol from L-phenylalanine  via cascade   [20]  MEI J F (梅建凤), CHEN H (陈虹), WANG  H (王鸿),  et al.
                 biotransformations[J]. ChemCatChem, 2018, 11(2): 831-840.     Synthesis of 2-phenylethanol by bioconversion in aqueous/organic
            [16] SHEN P (沈萍), FAN X R (范秀容), LI G W (李广武). Microbiology   solvent two-phase system[J].  Chemical Reaction Engineering and
                 experiment (微生物学实验)[M]. Beijing: Higher Education Press   Technology (化学反应工程与工艺), 2009, 25(1): 69-73.
                 (高等教育出版社), 2002.                              [21]  CHEN H (陈虹),  CHEN W Q (陈蔚青), ZHANG J F  (张建芬).
            [17]  HUANG Q  R (黄秋容), SU G J (粟桂娇), LIANG  M,  et al.   Synthesis of 2-phenylethanol by bioconversion in aqueous-organic
                 Determination of ten phenyl flavors in cinnamaldehyde bioconversion   solvent two-phase system[J]. The  Chinese Journal of Process
                 system by high performance liquid chromatography[J]. Food Research   Engineering (过程工程学报), 2011, 11(5): 782-785.


            (上接第 1161 页)                                           Interfaces, 2019, 11(50): 46851-46863.
                                                               [19]  YANG H Z, BAI Y F, GE C H, et al. Modified melamine foam-based
            [13]  WU W X, WU W, WANG S F. Form-stable and thermally induced
                 flexible composite phase change material for thermal energy storage   flexible phase change composites: Enhanced photothermal conversion
                 and thermal management applications[J]. Applied Energy, 2019, 236:   and shape memory properties[J]. ACS Applied  Polymer  Materials,
                 10-21.                                            2021, 3(7): 3321-3333.
            [14]  LI W W, WANG F, CHENG W L, et al. Study of using enhanced   [20]  CHENG P,  GAO  H Y, CHEN X,  et al. Flexible monolithic phase
                 heat-transfer flexible phase change material film in thermal management   change  material based on carbon nanotubes/chitosan/poly(vinyl
                 of compact electronic device[J]. Energy  Conversion and Management,   alcohol)[J]. Chemical Engineering Journal, 2020, 397: 125330.
                 2020, 210: 112680.                            [21]  UMAIR M M, ZHANG Y A, ZHANG S F, et al. A novel flexible
            [15]  LI W W, CHENG W L, XIE B, et al. Thermal sensitive flexible phase   phase change composite with electro-driven shape memory, energy
                 change materials with high thermal conductivity for thermal energy   conversion/storage and motion sensing properties[J]. Journal of
                 storage[J]. Energy Conversion and Management, 2017, 149: 1-12.   Materials Chemistry A, 2019, 7: 26385-26392.
            [16]  HUANG Q Q, DENG J, LI X X, et al. Experimental investigation on   [22]  SHENG N, RAO Z H, ZHU  C  Y,  et al. Enhanced  thermal
                 thermally induced aluminum nitride based flexible composite phase   performance of phase change material stabilized with textile-structured
                 change  material for battery thermal  management[J]. Journal of   carbon scaffolds[J]. Solar Energy Materials and Solar Cells, 2020,
                 Energy Storage, 2020, 32: 101755.                 205: 110241.
            [17]  SHAO Y W, HU  W W, GAO  M H,  et al. Flexible MXene-coated   [23]  LI L  Z (李连震). Preparation and  properties of marine silicone
                 melamine foam based phase change  material composites for   modified polyurethane damping material[D]. Shenyang:  Shenyang
                 integrated solar-thermal  energy conversion/storage, shape  memory   University of Technology (沈阳工业大学), 2019.
                 and thermal therapy functions[J]. Composites Part A: Applied   [24]  YEN M S, TSAI  P Y. Study on polyethylene glycol/polydimethyl
                 Science and Manufacturing, 2021, 143: 106291.     siloxane mixing soft-segment waterborne polyurethane from different
            [18]  WU H  Y,  DENG  S, SHAO Y W, et al. Multiresponsive shape-   mixing processes[J]. Applied Polymer, 2003, 1(90): 233-243.
                 adaptable phase change materials with cellulose nanofiber/graphene   [25]  LI H Y (李海英). The preparation and functional application of
                 nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal   polyurethane[D]. Wuhan: Wuhan Textile University (武汉纺织大
                 energy storage and utilization[J]. ACS Applied Materials &   学), 2013.

            (上接第 1177 页)                                           Fine Chemicals (精细化工), 2021, 38(2): 241-248.
                                                               [12]  ZHU S S (朱莎莎). Research on polycarbonate based thermoplastic
            [5]   CHEN Z H (陈中华), ZENG M (曾明), LI L (李亮), et al. Research   polyurethane elastomer and its nanofibers[D]. Shanghai: Donghua
                 progress of conductive polymer/polyurethane composites[J]. Modern   University (东华大学), 2019.
                 Chemical Industry (现代化工), 2020, 40(5): 73-76, 81.   [13]  FAN H, LI Q, LI K, et al. Stretchable electrothermochromic fibers
            [6]   LI Q, LI K, FAN  H, et al. Reduced graphene oxide functionalized   based on hierarchical porous structures with electrically conductive
                 stretchable and multicolor electrothermal chromatic fibers[J]. Journal   dual-pathways[J]. Science China-Materials, 2020, 63(12): 2582-2589.
                 of Materials Chemistry C, 2017, 5(44): 11448-11453.   [14]  QIN M R (秦美荣). Study on preparation and sensing characteristics
            [7]   LI Q (李强). Structural design and  function control of flexible   of  TPU-based electrospun fiber[D]. Xi′an: Xi′an University of
                 electro-thermochromic devices based on  low-dimensional carbon   Technology (西安理工大学), 2021.
                 materials[D]. Shanghai: Donghua University (东华大学), 2018.   [15]  YUE X Y, DAI K, SHEN C Y, et al. Highly stretchable and durable
            [8]   WANG W L (汪文龙), WANG J  N (王江楠), ZHAO X (赵昕).    fiber-shaped strain sensor with porous core-sheath structure for
                 Preparation of carbon nanotube/polyurethane composite film and its   human motion monitoring[J]. Composites Science and Technology,
                 tensile sensing properties[J]. Journal of Donghua University (东华大  2020, 189: 108038.
                 学学报), 2021, 47(2): 12-18.                     [16]  LU Y F (路一飞). Research on wearable sensing based on graphene
            [9]   WU Y X (吴颖欣), HU C Y (胡铖烨), ZHOU X Y (周筱雅), et al.   composite materials[D]. Nanjing: Southeast University (东南大学), 2019.
                 Strain sensing properties of flexible wearable spandex/polyaniline/   [17]  SUN F Q (孙奉强). Study on the preparation and properties of bionic
                 polyurethane composites[J]. Journal of Textile Research (纺织学报),   microstructure graphene highly elastic strain-insensitive conductive
                 2020, 41(4): 21-25.                               fiber[D]. Qingdao: Qingdao University (青岛大学), 2020.
            [10]  XIE L P (谢丽萍), XIANG D  L (向大龙), WANG R  Q (王仁乔),   [18]  GUO S  Q (郭少青), DONG Y(董弋), SUN  W X (孙万兴),  et al.
                 et al. Research progress of flexible wearable stress sensors[J].   Preparation of nano silver and its application in conductive paste[J].
                 Science Technology and Engineering(科学技术与工程), 2021,   Functional Material (功能材料), 2020, 51(11): 11042-11051.
                 21(20): 8301-8309.                            [19]  ZHANG H (张红), QU Y H (屈银虎), ZHENG J J (郑姣姣), et al.
            [11]  WU X Z (吴晓珍), MA X  Y (马兴元), DING B (丁博),  et al.   Research progress of nano-silver textile composite materials[J]. Cotton
                 Research progress  of carbon nanotubes modified polyurethane[J].   Textile Technology (棉纺织技术), 2021, 49(6): 74-79.
   118   119   120   121   122   123   124   125   126   127   128