Page 123 - 《精细化工》2022年第6期
P. 123
第 6 期 黄秋容,等: 两相体系中生物转化肉桂醇生成天然 2-苯乙醇 ·1189·
2-phenylethanol in a biphasic system with rapeseed oil[J]. New and Development (食品研究与开发), 2020, 41(2): 128-134.
Biotechnology, 2018, 42: 56-61. [18] LEÓN R, FEMANDES P, PINHEIRO H M, et al. Whole-cell
[14] LU J (陆军), ZHANG W G (张伟国). Production of 2-phenylethylalcohol biocatalysis in organic media[J]. Enzyme and Microbial Technology,
from L-phenylalanine by bioconversion in biphasic system[J]. Chemical 1998, 23(7/8): 483-500.
Industry and Engineering Progress (化工进展), 2008, 27(3): 417- [19] LAAN C, BOEREN S, VOS K, et al. Rules for the optimization of
420. biocatalysis in organic solvents[J]. Biotechnology and Bioengineering,
[15] BENEDICT R L, SHUKE W, HENG J J S, et al. One-pot production 1987, 30(1): 81-87.
of natural 2-phenylethanol from L-phenylalanine via cascade [20] MEI J F (梅建凤), CHEN H (陈虹), WANG H (王鸿), et al.
biotransformations[J]. ChemCatChem, 2018, 11(2): 831-840. Synthesis of 2-phenylethanol by bioconversion in aqueous/organic
[16] SHEN P (沈萍), FAN X R (范秀容), LI G W (李广武). Microbiology solvent two-phase system[J]. Chemical Reaction Engineering and
experiment (微生物学实验)[M]. Beijing: Higher Education Press Technology (化学反应工程与工艺), 2009, 25(1): 69-73.
(高等教育出版社), 2002. [21] CHEN H (陈虹), CHEN W Q (陈蔚青), ZHANG J F (张建芬).
[17] HUANG Q R (黄秋容), SU G J (粟桂娇), LIANG M, et al. Synthesis of 2-phenylethanol by bioconversion in aqueous-organic
Determination of ten phenyl flavors in cinnamaldehyde bioconversion solvent two-phase system[J]. The Chinese Journal of Process
system by high performance liquid chromatography[J]. Food Research Engineering (过程工程学报), 2011, 11(5): 782-785.
(上接第 1161 页) Interfaces, 2019, 11(50): 46851-46863.
[19] YANG H Z, BAI Y F, GE C H, et al. Modified melamine foam-based
[13] WU W X, WU W, WANG S F. Form-stable and thermally induced
flexible composite phase change material for thermal energy storage flexible phase change composites: Enhanced photothermal conversion
and thermal management applications[J]. Applied Energy, 2019, 236: and shape memory properties[J]. ACS Applied Polymer Materials,
10-21. 2021, 3(7): 3321-3333.
[14] LI W W, WANG F, CHENG W L, et al. Study of using enhanced [20] CHENG P, GAO H Y, CHEN X, et al. Flexible monolithic phase
heat-transfer flexible phase change material film in thermal management change material based on carbon nanotubes/chitosan/poly(vinyl
of compact electronic device[J]. Energy Conversion and Management, alcohol)[J]. Chemical Engineering Journal, 2020, 397: 125330.
2020, 210: 112680. [21] UMAIR M M, ZHANG Y A, ZHANG S F, et al. A novel flexible
[15] LI W W, CHENG W L, XIE B, et al. Thermal sensitive flexible phase phase change composite with electro-driven shape memory, energy
change materials with high thermal conductivity for thermal energy conversion/storage and motion sensing properties[J]. Journal of
storage[J]. Energy Conversion and Management, 2017, 149: 1-12. Materials Chemistry A, 2019, 7: 26385-26392.
[16] HUANG Q Q, DENG J, LI X X, et al. Experimental investigation on [22] SHENG N, RAO Z H, ZHU C Y, et al. Enhanced thermal
thermally induced aluminum nitride based flexible composite phase performance of phase change material stabilized with textile-structured
change material for battery thermal management[J]. Journal of carbon scaffolds[J]. Solar Energy Materials and Solar Cells, 2020,
Energy Storage, 2020, 32: 101755. 205: 110241.
[17] SHAO Y W, HU W W, GAO M H, et al. Flexible MXene-coated [23] LI L Z (李连震). Preparation and properties of marine silicone
melamine foam based phase change material composites for modified polyurethane damping material[D]. Shenyang: Shenyang
integrated solar-thermal energy conversion/storage, shape memory University of Technology (沈阳工业大学), 2019.
and thermal therapy functions[J]. Composites Part A: Applied [24] YEN M S, TSAI P Y. Study on polyethylene glycol/polydimethyl
Science and Manufacturing, 2021, 143: 106291. siloxane mixing soft-segment waterborne polyurethane from different
[18] WU H Y, DENG S, SHAO Y W, et al. Multiresponsive shape- mixing processes[J]. Applied Polymer, 2003, 1(90): 233-243.
adaptable phase change materials with cellulose nanofiber/graphene [25] LI H Y (李海英). The preparation and functional application of
nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal polyurethane[D]. Wuhan: Wuhan Textile University (武汉纺织大
energy storage and utilization[J]. ACS Applied Materials & 学), 2013.
(上接第 1177 页) Fine Chemicals (精细化工), 2021, 38(2): 241-248.
[12] ZHU S S (朱莎莎). Research on polycarbonate based thermoplastic
[5] CHEN Z H (陈中华), ZENG M (曾明), LI L (李亮), et al. Research polyurethane elastomer and its nanofibers[D]. Shanghai: Donghua
progress of conductive polymer/polyurethane composites[J]. Modern University (东华大学), 2019.
Chemical Industry (现代化工), 2020, 40(5): 73-76, 81. [13] FAN H, LI Q, LI K, et al. Stretchable electrothermochromic fibers
[6] LI Q, LI K, FAN H, et al. Reduced graphene oxide functionalized based on hierarchical porous structures with electrically conductive
stretchable and multicolor electrothermal chromatic fibers[J]. Journal dual-pathways[J]. Science China-Materials, 2020, 63(12): 2582-2589.
of Materials Chemistry C, 2017, 5(44): 11448-11453. [14] QIN M R (秦美荣). Study on preparation and sensing characteristics
[7] LI Q (李强). Structural design and function control of flexible of TPU-based electrospun fiber[D]. Xi′an: Xi′an University of
electro-thermochromic devices based on low-dimensional carbon Technology (西安理工大学), 2021.
materials[D]. Shanghai: Donghua University (东华大学), 2018. [15] YUE X Y, DAI K, SHEN C Y, et al. Highly stretchable and durable
[8] WANG W L (汪文龙), WANG J N (王江楠), ZHAO X (赵昕). fiber-shaped strain sensor with porous core-sheath structure for
Preparation of carbon nanotube/polyurethane composite film and its human motion monitoring[J]. Composites Science and Technology,
tensile sensing properties[J]. Journal of Donghua University (东华大 2020, 189: 108038.
学学报), 2021, 47(2): 12-18. [16] LU Y F (路一飞). Research on wearable sensing based on graphene
[9] WU Y X (吴颖欣), HU C Y (胡铖烨), ZHOU X Y (周筱雅), et al. composite materials[D]. Nanjing: Southeast University (东南大学), 2019.
Strain sensing properties of flexible wearable spandex/polyaniline/ [17] SUN F Q (孙奉强). Study on the preparation and properties of bionic
polyurethane composites[J]. Journal of Textile Research (纺织学报), microstructure graphene highly elastic strain-insensitive conductive
2020, 41(4): 21-25. fiber[D]. Qingdao: Qingdao University (青岛大学), 2020.
[10] XIE L P (谢丽萍), XIANG D L (向大龙), WANG R Q (王仁乔), [18] GUO S Q (郭少青), DONG Y(董弋), SUN W X (孙万兴), et al.
et al. Research progress of flexible wearable stress sensors[J]. Preparation of nano silver and its application in conductive paste[J].
Science Technology and Engineering(科学技术与工程), 2021, Functional Material (功能材料), 2020, 51(11): 11042-11051.
21(20): 8301-8309. [19] ZHANG H (张红), QU Y H (屈银虎), ZHENG J J (郑姣姣), et al.
[11] WU X Z (吴晓珍), MA X Y (马兴元), DING B (丁博), et al. Research progress of nano-silver textile composite materials[J]. Cotton
Research progress of carbon nanotubes modified polyurethane[J]. Textile Technology (棉纺织技术), 2021, 49(6): 74-79.