Page 145 - 《精细化工》2022年第6期
P. 145
第 6 期 王清福,等: 双羟基吡喃酮化合物的合成及清除自由基性能 ·1211·
[12] LIN S, WADE J D, LIU S. De novo design of flavonoid-based [21] KUSSTATSCHER P, CERNAVA T, LIEBMINGER S, et al. Replacing
mimetics of cationic antimicrobial peptides: Discovery, development, conventional decontamination of hatching eggs with a natural defense
and applications[J]. Accounts of Chemical Research, 2021, 54(1): strategy based on antimicrobial, volatile pyrazines[J]. Scientific
104-119. Reports, 2017, 7(1): 13253-13260.
[13] GAN Q, LIN C Y, LU C J, et al. Staprexanthones, xanthone-type [22] AHMED M H, EL-HASHASH M A, MARZOUK M I, et al. Design,
stimulators of pancreatic β-cell proliferation from a mangrove synthesis, and biological evaluation of novel pyrazole, oxazole, and
endophytic fungus [J]. Journal of Natural Products, 2020, 83(10): pyridine derivatives as potential anticancer agents using mixed chalcone
2996-3003. [J]. Journal of Heterocyclic Chemistry, 2019, 56(1): 114-123.
[14] MIN M (闵曼), FENG C (丰翠), DU J (杜俊), et al. Synthesis and [23] DONG B (董飚), MA T (马涛), ZHANG T (章天), et al. Anti-HIV-1
antioxidant activity of 3-amino-2H-chromen-2-one derivatives[J]. activity and structure-activity relationship of pyranocoumarin analogs
Chemical Reagents (化学试剂), 2017, 39(9): 921-924. [J]. Acta Pharmaceutica Sinica (药学学报), 2011, 46(1): 35-38.
[15] WU N (吴闹), WANG J Y (王静祎), JIANG T (江甜), et al. Preparation, [24] KOSTOVA I, BHATIA S, GRIGOROV P. Coumarins as antioxidants
spectral properties and antioxidant activities of pyranone-anthocyanin [J]. Current Medicinal Chemistry, 2011, 18: 3929-3951.
derivative (oxovitisin)[J]. Spectroscopy and Spectral Analysis (光谱 [25] JIANG L (姜柳). Design, synthesis and biological evaluation of 5-
学与光谱分析), 2017, 37(7): 2120-2127. hydroxy pyranone derivatives as multitarget agents against Alzheimer’s
[16] YANG J (杨杰). Designed synthesis, cancer chemopreventive activities disease[D]. Hangzhou: Zhejiang University(浙江大学), 2016.
and mechanism of stilbene-chroman and stilbene-benzopyrone [26] LI Y B (黎奕斌). Design and synthesis of novel hydroxypyranone,
hybrids[D]. Lanzhou: Lanzhou University(兰州大学), 2011. hydroxylpyridinones derivatives, and discovery of Pseudomonas
[17] ABU-HASHEM A A, EL-SHAZLY M. Synthesis of new isoxazole, Aeruginosa biofilm inhibitor[D]. Guangzhou: Jinan University(暨南
pyridazine, pyrimidopyrazines and their antiinflammatory and analgesic 大学), 2018.
activity[J]. Medicinal Chemistry, 2018, 14(4): 356-371. [27] LIU J ( 刘君 ). Discovery and mechanism study of novel
[18] KAUR A, WAKODE S, PATHAK D P, et al. Synthesis, cyclooxygenase-2 hydroxypyranone derivatives as Pseudomonas Aeruginosa biofilm
inhibition, anti-inflammatory evaluation and docking study of inhibitors[D]. Guangzhou: Jinan University(暨南大学), 2019.
substituted-N-(3,4,5-trimethoxyphenyl)-benzo[d] oxazole derivatives [28] SU X M (苏晓敏). Protective effect of maltol on experimental liver
[J]. Medicinal Chemistry, 2018, 14(7): 660-673. injury and its antitumor activity[D]. Changchun: Jilin Agricultural
[19] ZHAO D L, HAN X B, WANG M, et al. Herbicidal and antifungal University(吉林农业大学), 2016.
xanthone derivatives from the alga-derived fungus aspergillus versicolor [29] XI G L (席高磊). Study on the antioxidant properties of coumarin
D5[J]. Journal of Agricultural and Food Chemistry, 2020, 68(40): and quinolone derivatives[D]. Changchun: Jilin University(吉林大
11207-11214. 学), 2016.
[20] HAN W B, WANG G Y, TANG J J, et al. Herpotrichones A and B, [30] WANG R, LIU Z Q. Solvent-free and catalyst-free Biginelli reaction
two intermolecular [4+2] adducts with anti-neuroinflammatory to synthesize ferrocenoyl dihydropyrimidine and kinetic method to
activity from a herpotrichia species[J]. Organic Letters, 2020, 22(2): express radical-scavenging ability[J]. Journal of Organic Chemistry,
405-409. 2012, 77: 3952-3958.
(上接第 1169 页) Electronics, 2017, 28, 5308-5314.
[23] XU Y D(许亚东)Electromagnetic interference shielding polymer
[14] CHEN Y, PANG L, LI Y, et al. Ultra-thin and highly flexible composites: Structural design and performance research[D]. Taiyuan:
cellulose nanofiber/silver nanowire conductive paper for effective North University of China (中北大学), 2019.
electromagnetic interference shielding[J]. Composites Part A: Applied [24] CHEND, QIAO X, QIU X, et al. Large-scale synthesis of silver
Science and Manufacturing, 2020, 135: 105960. nanowircs via a solvothermal method[J]. Journal of materials
[15] CHEN X, YUAN F, ZHANG H, et al. Recent approaches and future science, 2011, 22: 6-13.
prospects of bacterial cellulose-based electroconductive materials[J]. [25] QIN S D (覃蜀迪). Preparation and properties of functional bacterial
Journal of Materials Science, 2016, 51: 5573-5588. cellulose nanocomposites[D]. Xi'an: Shaanxi University of Science
[16] CHEN J J, LIU S L, WU H B, et al. Structural regulation of silver & Technology (陕西科技大学), 2020.
nanowires and their application in flexible electronic thin films[J]. [26] SHEN L H, BAO J F, WANG D, et al. One-step synthesis of
Materials & Design, 2018, 154 : 266-274. monodisperse, water-soluble ultra-small Fe 3O 4 nanoparticles for
[17] LI Z, LIN H, DING S, et al. Synthesis and enhanced electromagnetic potential bio-application[J]. Nanoscale, 2013, 5: 2133-2141.
wave absorption performances of Fe 3O 4@C decorated walnut shell- [27] YANG W (杨文). Preparation of Fe 3O 4/cellulose composites and its
derived porous carbon[J]. Carbon, 2020, 167: 148-159. sensing application[D]. Wuhan: Wuhan University (武汉大学), 2020.
[18] CHEN Y, PTSCHKE P, PIONTECK J, et al. Multifunctional cellulose/ [28] KANG S L (康松磊). Structure design and prpoerty investigation of
rGO/Fe 3O 4 composite aerogels for electromagnetic interference lightweight and high-performance polymer-based electromagnetic
shielding[J]. ACS Applied Materials & Interfaces, 2020, 12: 22088- interference shielding composites[D]. Xi'an: Shaanxi University of
22098. Science & Technology (陕西科技大学), 2021.
[19] CHANTHIWONG M, MONKOLTHANARUK W, EICHHORN S J, [29] LIU H, WU S Q, YOU C Y, et al. Recent progress in morphological
et al. Controlling the processing of co-precipitated magnetic bacterial engineering of carbon materials for electromagnetic interference
cellulose/iron oxide nanocomposites[J]. Materials & Design, 2020, shielding[J]. Carbon, 2021, 172: 569-596.
196: 109148. [30] ZHU X, XU J, QIN F, et al. Highly efficient and stable transparent
[20] JIA F, XIE F, CHEN S, et al. Magnetic Ti 3C 2T x/Fe 3O 4/aramid electromagnetic interference shielding films based on silver
nanofibers composite paper with tunable electromagnetic interference nanowires[J]. Nanoscale, 2020, 12: 14589.
shielding performance[J]. Applied Physics A, 2021, 127: 1-13. [31] LUO X M (罗晓民), JIANG W (蒋雯), DUAN X B (段徐宾) et al.
[21] SHENG A, REN W, YANG Y, et al. Multilayer WPU conductive Prepartion and electromagnetic shielding performance of RGONs@
composites with controllable electro-magnetic gradient for absorption- Fe 3O 4/WPU superfine fiber synthetic leather[J]. Fine Chemicals (精
dominated electromagnetic interference shielding[J]. Composites 细化工), 2020, 37(7): 1414-1421.
Part A: Applied Science and Manufacturing, 2019, 129: 105692 [32] LI Y, XUE B, YANG S D, et al. Flexible multilayered films
[22] MAO Y Y, YANG H W, GUO J M, et al. Large-scale synthesis of consisting of alternating nanofibrillated cellulose/Fe 3O 4 and carbon
AgNWs with ultra-high aspect ratio above 4000 and their application nanotube/polyethylene oxide layers for electromagnetic interference
in conductive thin film[J]. Journal of Materials Science: Materials in shielding[J]. Chemical Engineering Journal, 2021, 410: 128356.