Page 145 - 《精细化工》2022年第6期
P. 145

第 6 期                    王清福,等:  双羟基吡喃酮化合物的合成及清除自由基性能                                   ·1211·


            [12]  LIN S, WADE J  D, LIU S.  De novo design  of flavonoid-based   [21]  KUSSTATSCHER P, CERNAVA T, LIEBMINGER S, et al. Replacing
                 mimetics of cationic antimicrobial peptides: Discovery, development,   conventional decontamination of hatching eggs with a natural defense
                 and applications[J]. Accounts of Chemical  Research, 2021, 54(1):   strategy based on antimicrobial, volatile pyrazines[J].  Scientific
                 104-119.                                          Reports, 2017, 7(1): 13253-13260.
            [13]  GAN Q, LIN C Y, LU C  J, et  al. Staprexanthones, xanthone-type   [22]  AHMED M H, EL-HASHASH M A, MARZOUK M I, et al. Design,
                 stimulators of pancreatic  β-cell proliferation from a mangrove   synthesis, and biological evaluation of novel pyrazole, oxazole, and
                 endophytic fungus  [J]. Journal of Natural Products, 2020, 83(10):   pyridine derivatives as potential anticancer agents using mixed chalcone
                 2996-3003.                                        [J]. Journal of Heterocyclic Chemistry, 2019, 56(1): 114-123.
            [14]  MIN M (闵曼), FENG C (丰翠), DU J (杜俊), et al. Synthesis and   [23]  DONG B (董飚), MA T (马涛), ZHANG T (章天), et al. Anti-HIV-1
                 antioxidant activity of 3-amino-2H-chromen-2-one derivatives[J].   activity and structure-activity relationship of pyranocoumarin analogs
                 Chemical Reagents (化学试剂), 2017, 39(9): 921-924.   [J]. Acta Pharmaceutica Sinica (药学学报), 2011, 46(1): 35-38.
            [15] WU N (吴闹), WANG J Y (王静祎), JIANG T (江甜), et al. Preparation,   [24]  KOSTOVA I, BHATIA S, GRIGOROV P. Coumarins as antioxidants
                 spectral properties and antioxidant activities of pyranone-anthocyanin   [J]. Current Medicinal Chemistry, 2011, 18: 3929-3951.
                 derivative (oxovitisin)[J]. Spectroscopy and Spectral Analysis (光谱  [25]  JIANG L (姜柳). Design, synthesis and biological evaluation of 5-
                 学与光谱分析), 2017, 37(7): 2120-2127.                  hydroxy pyranone derivatives as multitarget agents against Alzheimer’s
            [16]  YANG J (杨杰). Designed synthesis, cancer chemopreventive activities   disease[D]. Hangzhou: Zhejiang University(浙江大学), 2016.
                 and mechanism of stilbene-chroman and stilbene-benzopyrone   [26]  LI Y B (黎奕斌). Design and synthesis of novel hydroxypyranone,
                 hybrids[D]. Lanzhou: Lanzhou University(兰州大学), 2011.   hydroxylpyridinones derivatives, and discovery of  Pseudomonas
            [17]  ABU-HASHEM A A, EL-SHAZLY M. Synthesis of new isoxazole,   Aeruginosa biofilm inhibitor[D]. Guangzhou: Jinan University(暨南
                 pyridazine, pyrimidopyrazines and their antiinflammatory and analgesic   大学), 2018.
                 activity[J]. Medicinal Chemistry, 2018, 14(4): 356-371.   [27]  LIU J ( 刘君 ). Discovery and mechanism study  of  novel
            [18]  KAUR A, WAKODE S, PATHAK D P, et al. Synthesis, cyclooxygenase-2   hydroxypyranone derivatives as  Pseudomonas Aeruginosa biofilm
                 inhibition, anti-inflammatory evaluation and  docking  study of   inhibitors[D]. Guangzhou: Jinan University(暨南大学), 2019.
                 substituted-N-(3,4,5-trimethoxyphenyl)-benzo[d] oxazole derivatives   [28]  SU X M (苏晓敏). Protective effect of maltol on experimental liver
                 [J]. Medicinal Chemistry, 2018, 14(7): 660-673.     injury and its antitumor activity[D].  Changchun: Jilin Agricultural
            [19]  ZHAO D L, HAN X B, WANG M, et al. Herbicidal and antifungal   University(吉林农业大学), 2016.
                 xanthone derivatives from the alga-derived fungus aspergillus versicolor   [29]  XI G L (席高磊). Study on the antioxidant properties of coumarin
                 D5[J]. Journal of  Agricultural and Food Chemistry, 2020, 68(40):   and quinolone derivatives[D]. Changchun: Jilin University(吉林大
                 11207-11214.                                      学), 2016.
            [20]  HAN W B, WANG G Y, TANG J J, et al. Herpotrichones A and B,   [30]  WANG R, LIU Z Q. Solvent-free and catalyst-free Biginelli reaction
                 two intermolecular [4+2] adducts  with anti-neuroinflammatory   to synthesize ferrocenoyl dihydropyrimidine and kinetic method to
                 activity from a herpotrichia species[J]. Organic Letters, 2020, 22(2):   express radical-scavenging ability[J]. Journal of Organic Chemistry,
                 405-409.                                          2012, 77: 3952-3958.


            (上接第 1169 页)                                           Electronics, 2017, 28, 5308-5314.
                                                               [23] XU Y D(许亚东)Electromagnetic interference shielding polymer
            [14]  CHEN  Y, PANG L, LI  Y,  et al. Ultra-thin and  highly flexible   composites: Structural design and performance research[D]. Taiyuan:
                 cellulose nanofiber/silver nanowire conductive paper for effective   North University of China (中北大学), 2019.
                 electromagnetic interference shielding[J]. Composites Part A: Applied   [24]  CHEND, QIAO  X, QIU X,  et al. Large-scale synthesis of silver
                 Science and Manufacturing, 2020, 135: 105960.     nanowircs  via  a solvothermal  method[J]. Journal of  materials
            [15]  CHEN X, YUAN F, ZHANG H, et al. Recent approaches and future   science, 2011, 22: 6-13.
                 prospects of bacterial cellulose-based electroconductive materials[J].   [25]  QIN S D (覃蜀迪). Preparation and properties of functional bacterial
                 Journal of Materials Science, 2016, 51: 5573-5588.   cellulose nanocomposites[D]. Xi'an: Shaanxi University of Science
            [16]  CHEN J J, LIU S L, WU H B, et al. Structural regulation of silver   & Technology (陕西科技大学), 2020.
                 nanowires and their application in flexible electronic thin films[J].   [26]  SHEN L H, BAO J F, WANG D,  et al. One-step synthesis  of
                 Materials & Design, 2018, 154 : 266-274.          monodisperse, water-soluble ultra-small Fe 3O 4 nanoparticles for
            [17]  LI Z, LIN H, DING S, et al. Synthesis and enhanced electromagnetic   potential bio-application[J]. Nanoscale, 2013, 5: 2133-2141.
                 wave absorption performances of Fe 3O 4@C decorated walnut shell-   [27]  YANG W (杨文). Preparation of Fe 3O 4/cellulose composites and its
                 derived porous carbon[J]. Carbon, 2020, 167: 148-159.   sensing application[D]. Wuhan: Wuhan University (武汉大学), 2020.
            [18]  CHEN Y, PTSCHKE P, PIONTECK J, et al. Multifunctional cellulose/   [28]  KANG S L (康松磊). Structure design and prpoerty investigation of
                 rGO/Fe 3O 4 composite aerogels for  electromagnetic interference   lightweight and high-performance polymer-based electromagnetic
                 shielding[J]. ACS Applied Materials & Interfaces, 2020, 12: 22088-   interference shielding composites[D].  Xi'an: Shaanxi University of
                 22098.                                            Science & Technology (陕西科技大学), 2021.
            [19]  CHANTHIWONG M, MONKOLTHANARUK W, EICHHORN S J,   [29]  LIU H, WU S Q, YOU C Y, et al. Recent progress in morphological
                 et al. Controlling the processing of co-precipitated magnetic bacterial   engineering of carbon materials for  electromagnetic interference
                 cellulose/iron oxide nanocomposites[J]. Materials & Design, 2020,   shielding[J]. Carbon, 2021, 172: 569-596.
                 196: 109148.                                  [30]  ZHU X, XU J, QIN F, et al. Highly efficient and stable transparent
            [20]  JIA F, XIE F, CHEN S,  et al. Magnetic Ti 3C 2T x/Fe 3O 4/aramid   electromagnetic interference shielding films based on silver
                 nanofibers composite paper with tunable electromagnetic interference   nanowires[J]. Nanoscale, 2020, 12: 14589.
                 shielding performance[J]. Applied Physics A, 2021, 127: 1-13.   [31]  LUO X M (罗晓民), JIANG W (蒋雯), DUAN X B (段徐宾) et al.
            [21]  SHENG A, REN  W,  YANG  Y,  et al. Multilayer WPU  conductive   Prepartion and electromagnetic shielding performance of RGONs@
                 composites with controllable electro-magnetic gradient for absorption-   Fe 3O 4/WPU superfine fiber synthetic leather[J]. Fine Chemicals (精
                 dominated electromagnetic interference shielding[J]. Composites   细化工), 2020, 37(7): 1414-1421.
                 Part A: Applied Science and Manufacturing, 2019, 129: 105692   [32]  LI Y, XUE B, YANG S D,  et al. Flexible multilayered films
            [22]  MAO Y Y, YANG H W, GUO J M, et al. Large-scale synthesis of   consisting of alternating nanofibrillated cellulose/Fe 3O 4 and carbon
                 AgNWs with ultra-high aspect ratio above 4000 and their application   nanotube/polyethylene oxide layers for electromagnetic interference
                 in conductive thin film[J]. Journal of Materials Science: Materials in   shielding[J]. Chemical Engineering Journal, 2021, 410: 128356.
   140   141   142   143   144   145   146   147   148   149   150