Page 203 - 《精细化工》2022年第6期
P. 203
第 6 期 孙洋洋,等: 三苯乙烯基阴离子分散剂在液体分散染料制备中的应用 ·1269·
disperse dyes with high fixation yield for exhaust dyeing of al. Effects of anionic dispersant on the dispersion and dyeing properties
polyester[J]. Dyeing and Finishing (印染), 2020, 46(4): 27-30. of disperse orange SE-RFL raw dyes[J]. Journal of Textile Science
[5] CUI Y Y (崔芽芽), LI J H (李剑浩), ZHANG Y J (章云菊), et al. and Engineering (纺织科学与工程学报), 2018, 35(4): 71-75.
Influence of fatty amine polyoxyethylene ether on the performance of [15] FARROKHPAY S, MORRIS G E, FOMASIERO D, et al.
liquid dispersion blue 79[J]. Dyeing and Finishing (印染), 2021, Stabilisation of titania pigment particles with anionic polymeric
47(4): 28-32. dispersants[J]. Powder Technology, 2010, 202(1/2/3): 143-150.
[6] HU H N (胡会娜), SHI Y B (石瑜博), ZHU Y W (朱亚伟), et al. [16] MAKAREWICE E, MICHALIK A. Research on the influence of the
Preparation stability and dyeing performance of high strength type of surfactant and concentrator in aqueous dispersion of pigments
disperse orange 288 liquid dye[J]. Journal of Silk (丝绸), 2021, [J]. Journal of Surfactants and Detergents, 2014, 17(4): 773-784.
58(1): 8-12. [17] ZHANG B, DONG X, YU D, et al. Stabilization mechanisms of CI
[7] FENG H (冯欢), WANG X R (王祥荣). Effect of dispersant on the disperse red 60 dispersions in the presence of its dye-polyether
properties of the liquid disperse orange 30[J]. Textile Auxiliaries (印 derivatives[J]. Colloids and Surfaces A: Physicochemical and
染助剂), 2016, 33(8): 52-56. Engineering Aspects, 2012, 405(13): 65-72.
[8] GHARANJIG K, DADRAS F S, SADEGHI-KIAKHANI M, et al. [18] QIAN T, ZHONG Y, MAO Z P, et al. The comb-like modified
Stability of dye dispersions in the presence of various surface active styrene-maleic anhydride copolymer dispersant for disperse dyes[J].
agents and additives[J]. Journal of Dispersion Science and Journal of Applied Polymer Science, 2019, 136(16): 47330.
Technology, 2013, 34(3): 381-388. [19] XU Q (徐琴), LIU S J (刘守军), YANG S (杨颂), et al. Effect of
[9] QIAN C X (钱春霞), HE Q H (何权辉), ZHAO P (赵朋), et al. hyperdispersant on dispersion of purple gel ink pigment and its
Preparation of liquid disperse dye and the dispersants used[J]. application[J]. Fine Chemicals (精细化工), 2021, 38(3): 625-631.
Dyestuffs and Coloration (染料与染色), 2021, 58(5): 43-48, 34. [20] QIAN G D (钱国坻). Studies on improvement of high temperature
[10] DONG X (董霞), RUAN D (阮迪), ZHENG Z H (郑兆和), et al. dispersibility of mixed disperse dyes with surfactants[J]. Textile
The influence of nonionic dispersant structure on the dispersion Auxiliaries (印染助剂), 1999, 16(6): 8-12.
stability of C. I. disperse yellow 64[J]. Textile Auxiliaries (印染助 [21] CHEN J (陈娟). Study on thermosol dyeing technology of polyester
剂), 2010, 27(3): 11-15. fabric[D]. Suzhou: Soochow University (苏州大学), 2017.
[11] LIU Z P (刘志鹏), LIU M H (刘明华). Preparation of lignin-based [22] QIU J Y (邱俊云), LI W G (李文刚), YANG X D (杨小东), et al.
dye dispersant and its application research[J]. Journal of Cellulose Synthesis and properties of tristyrylphenol polyoxyethylene ether
Science and Technology (纤维科学与技术), 2015, 23(3): 49-54. sulfate[J]. Shanghai Chemical Industry (上海化工), 2019, 44(4):
[12] ZHANG Z M (张志鸣), ZHOU M S (周明松), YANG D J (杨东杰), 11-15.
et al. Preparation and performance of high temperature sulfomethylated [23] QIN Y L (秦延林). Study of hydroxypropyl sulfonated alkali lignin
alkali lignin dye dispersant[J]. Fine Chemicals (精细化工), 2014, dye dispersant and production of cellulose nanofibrils by oxalic acid
31(12): 1500-1505. pretreatment[D]. Guangzhou: South China University of Technology
[13] XIU Y F, WANG K Z, WANG C X, et al. Comparative analysis of (华南理工大学), 2016.
ultra-fine fluorescent disperse dye paste and its stability with [24] QIU J Y (邱俊云), WENG Y J (翁雨佳), HU G Y (胡国耀), et al.
naphthalene sulphonic derivative dispersant[J]. Pigment & Resin Effect of ethylene oxide (EO) chain length on the properties of
Technology, 2013, 42(6): 406-410. tristyrylphenol polyoxyethylene ether sulfate[J]. Shanghai Chemical
[14] ZHANG Z H (张泽慧), HAO K Y (郝昆玥), MO L X (莫林祥), et Industry (上海化工), 2019, 44(9): 16-21.
(上接第 1105 页) 10837.
[49] RICE G T, WHITE M C. Allylic C—H amination for the preparation [57] STRAMBEANU I I, WHITE M C. Catalyst-controlled C—O versus
of syn-1,3-amino alcohol motifs[J]. Journal of the American Chemical C—N allylic functionalization of terminal olefins[J]. Journal of the
Society, 2009, 131(33): 11707-11711. American Chemical Society, 2013, 135(32): 12032-12037.
[50] QI X B, RICE G T, LALL M S, et al. Diversification of a β-lactam [58] STANG E M, WHITE M C. Molecular complexity via C—H
pharmacophore via allylic C—H amination: Accelerating effect of activation: A dehydrogenative Diels-Alder reaction[J]. Journal of the
Lewis acid co-catalyst[J]. Tetrahedron, 2010, 66(26): 4816-4826. American Chemical Society, 2011, 133(38): 14892-14895.
[51] YU X Q, HUANG J S, ZHOU X G, et al. Amidation of saturated C— [59] KONDO H, YU F, YAMAGUCHI J, et al. Branch-selective allylic
H bonds catalyzed by electron-deficient ruthenium and manganese C—H carboxylation of terminal alkenes by Pd/SOX catalyst[J].
porphyrins. A highly catalytic nitrogen atom transfer process[J]. Organic Letters, 2014, 16(16): 4212-4215.
Organic Letters, 2000, 2(15): 2233-2236. [60] MA R L, WHITE M C. C—H to C—N cross-coupling of
[52] REED S A, WHITE M C. Catalytic intermolecular linear allylic C—H sulfonamides with olefins[J]. Journal of the American Chemical
amination via heterobimetallic catalysis[J]. Journal of the American Society, 2018, 140(9): 3202-3205.
Chemical Society, 2008, 130(11): 3316-3318. [61] MA R L, YOUNG J, PROMONTORIO R, et al. Synthesis of anti-1,3
[53] PATTILLO C C, STRAMBEANU I I, CALLEJA P, et al. Aerobic amino alcohol motifs via Pd(Ⅱ)/SOX catalysis with the capacity for
linear allylic C—H amination: Overcoming benzoquinone inhibition[J]. stereodivergence[J]. Journal of the American Chemical Society,
Journal of the American Chemical Society, 2016, 138(4): 1265-1272. 2019, 141(24): 9468-9473.
[54] GORMISKY P E, WHITE M C. Synthetic versatility in C—H [62] VELASCO-RUBIO Á, VARELA J A, SAÁ C. Pd-catalyzed allylic
oxidation: A rapid approach to differentiated diols and pyrans from C—H activation to seven-membered N,O-heterocycles[J]. Chemical
simple olefins[J]. Journal of the American Chemical Society, 2011, Communications, 2021, 57(83): 10915-10918.
133(32): 12584-12589. [63] CHEN S S, WU M S, HAN Z Y. Palladium-catalyzed cascade sp 2
[55] OSBERGER T J, WHITE M C. N-boc amines to oxazolidinones via C—H functionalization/intramolecular asymmetric allylation: From
Pd( Ⅱ )/bis-sulfoxide/Brønsted acid co-catalyzed allylic C—H aryl ureas and 1,3-dienes to chiral indolines[J]. Angewandte Chemie
oxidation[J]. Journal of the American Chemical Society, 2014, 136(31): International Edition, 2017, 56(23): 6641-6645.
11176-11181. [64] BUNNO Y, TSUKIMAWASHI Y, KOJIMA M, et al. Metal-
[56] AMMANN S E, RICE G T, WHITE M C. Terminal olefins to containing Schiff base/sulfoxide ligands for Pd( Ⅱ )-catalyzed
chromans, isochromans, and pyrans via allylic C—H oxidation[J]. asymmetric allylic C—H aminations[J]. ACS Catalysis, 2021, 11(5):
Journal of the American Chemical Society, 2014, 136(31): 10834- 2663-2668.