Page 230 - 《精细化工》2022年第6期
P. 230

·1296·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 supported on zeolite  via the impregnation on the crystallization   2070.
                 ability of isotactic polypropylene and its mechanism[J]. Polymers for   [23]  HARVEY A P, MACKLEY M R, STONESTREET P. Operation and
                 Advanced Technologies, 2019, 30(11): 2674-2685.     optimization of an oscillatory flow continuous reactor[J]. Industrial
            [4]   SVARA J.  An easy preparation of  pure cyclic diaryl phosphate:   & Engineering Chemistry Research, 2001, 40(23): 5371-5377.
                 CA2030179[P]. 1991-06-10.                     [24]  LEY S V, FITZPATRICK D E, MYERS R M, et al. Machine-assisted
            [5]   TAJIMA K,  TAKAHASHI M.  Diaryl phosphate metal salts:   organic synthesis[J].  Angewandte Chemie-International Edition,
                 JP61210090[P]. 1986-09-18.                        2015, 54(35): 10122-10136.
            [6]   XIN Z (辛忠), WAN L (万力),  YAO H L (姚翰林), et al.  A   [25]  POMBERGER A, MO Y M, NANDIWALE K Y, et al. A continuous
                 continuous  preparation method for substituted diaryl phosphate   stirred-tank reactor (CSTR) cascade for handling solid-containing
                 compounds: CN202010644937. 8[P]. 2020-07-06.      photochemical reactions[J]. Organic Process Research & Development,
            [7]   XIN Z (辛忠). Process for one-stage synthesizing substituted diaryl   2019, 23(12): 2699-2706.
                 organic metal phosphate: CN1358728A[P]. 2002-07-17.     [26]  CRUZ P C, SILVA C R, ROCHA F A, et al. Mixing performance of
            [8]   GONG X H (龚小红), HUANG Y G (黄艳刚), YUE D J (乐道进).   planar oscillatory flow reactors with liquid solutions  and solid
                 New preparation process of 2, 2′-methylene-bis (4, 6-di-tert-butylphenol)   suspensions[J]. Industrial & Engineering Chemistry Research, 2021,
                 phosphate[J]. Chemistry & Bioengineering (化学与生物工程), 2012,   60(6): 2663-2676.
                 29(2): 62-63, 76.                             [27]  HARTMAN R L, NABER J R, ZABORENKO N, et al. Overcoming
            [9]   BAI R (白瑞), LIU D S (刘定胜). Preparation of fluorescent polymer   the challenges of solid bridging and constriction during Pd-catalyzed
                 nanoparticles based on capillary array microreactor[J]. Fine Chemicals   C—N bond formation in microreactors[J]. Organic Process Research
                 (精细化工), 2021, 38(11): 2227-2232.                  & Development, 2010, 14(6): 1347-1357.
            [10]  LIU J W (刘建武), ZHANG Y (张跃). Continuous flow process for   [28]  NOEL T, NABER J R, HARTMAN R L, et al. Palladium-catalyzed
                 ammoximation of acetone in liquid phase[J]. Fine Chemicals (精细  amination reactions in flow: Overcoming the challenges of clogging
                 化工), 2021, 38(5): 1074-1080.                      via acoustic irradiation[J]. Chemical Science, 2011, 2(2): 287-290.
            [11]  ADAMO A, BEINGESSNER R L, BEHNAM M, et al. On-demand   [29]  KUHN S, NOEL T, GU L, et  al.  A teflon microreactor with
                 continuous-flow production  of  pharmaceuticals in a compact,   integrated piezoelectric actuator to handle solid forming reactions[J].
                 reconfigurable system[J]. Science, 2016, 352(6281): 61-67.     Lab on a Chip, 2011, 11(15): 2488-2492.
            [12]  WANG K, LUO  G S. Microflow extraction: A review of recent   [30]  GHANEM A,  LEMENAND T, DELLA V D, et al.  Static mixers:
                 development[J]. Chemical Engineering Science, 2017, 169(21): 18-33.     Mechanisms, applications, and characterization methods-A review[J].
            [13]  MAO M M, ZHANG L, YAO H L, et al. Development and scale-up   Chemical Engineering Research & Design, 2014, 92(2): 205-228.
                 of the rapid synthesis of triphenyl phosphites in continuous flow[J].   [31]  MENG H B, HAN M Q, YU Y F, et al. Numerical evaluations on the
                 Acs Omega, 2020, 5(16): 9503-9509.                characteristics of turbulent flow and heat transfer in the lightnin static
            [14]  YAO C Q, ZHAO Y C, CHEN G W. Multiphase processes with ionic   mixer[J]. International Journal of Heat and Mass  Transfer, 2020,
                 liquids in microreactors:  Hydrodynamics,  mass transfer  and   156(2020): 119788.
                 applications  [J].  Chemical  Engineering Science, 2018, 189(2):   [32]  DONG Y C, NG W K, HU J, et al. A continuous and highly effective
                 340-359.                                          static mixing process for antisolvent precipitation of nanoparticles of
            [15]  ONISURU  O  R, ALIMI O  A, POTGIETER K, et  al.  Continuous-   poorly water-soluble drugs[J]. International Journal of Pharmaceutics,
                 flow catalytic degradation of hexacyanoferrate ion through electron   2010, 386(1/2): 256-261.
                 transfer induction in a 3D-printed flow reactor[J]. Journal of   [33]  VAN WAGENINGEN W F C, MUDDE R F, VAN DEN AKKER H
                 Materials Engineering and Performance, 2021, 30(7): 4891-4901.     E A. Numerical simulation of growing Cu particles in a Kenics static
                                                                                      2+
            [16]  COLEY C W, THOMAS D A  Ⅲ, LUMMISS J A M, et al. A robotic   mixer reactor in  which Cu  is  reduced by carbohydrates[J].
                 platform for  flow  synthesis  of organic compounds informed by  AI   Chemical Engineering Science, 2004, 59(22/23): 5193-5200.
                 planning[J]. Science, 2019, 365(6453): eaax1566.     [34]  GOBERT S R L, KUHN S, BRAEKEN L, et al. Characterization of
            [17]  BO X F (薄晓帆), WAN L (万力), XIN Z (辛忠). Sol-gel prepared   milli- and microflow reactors: Mixing efficiency and residence time
                 mesoporous Pd/m-TiO 2 for continuous-flow Suzuki coupling reaction   distribution[J]. Organic Process Research & Development, 2017,
                 [J]. Fine Chemicals (精细化工), 2021, 38(8): 1613-1620.     21(4): 531-542.
            [18]  POMMELLA A, TOMAIUOLO G, CHARTOIRE A, et al. Palladium-   [35]  JIN D (金丹), FU H L (付海玲), WU J H (吴剑华), et al. Analysis
                 N-heterocyclic  carbene (NHC) catalyzed C-N bond formation in a   for the effect of factors on residence time distribution in kenics static
                 continuous flow  microreactor. Effect of  process parameters and   mixer[J]. Journal of Petrochemical Universities (石油化工高等学校
                 comparison with batch operation[J]. Chemical Engineering Journal,   学报), 2011, 24(3): 70-74.
                 2013, 223(1): 578-583.                        [36]  MENG  H B (孟辉波), WU J H (吴剑华), YU Y F (禹言芳).
            [19]  PERAZZO A, TOMAIUOLO G, SICIGNANO L, et al. A microfluidic   Numerical simulation of residence time distribution in Kenics static
                 approach for flexible and efficient operation of a  cross-coupling   mixer[J]. Journal of Petrochemical Universities (石油化工高等学校
                 reactive flow[J]. RSC Advances, 2015, 5(78): 63786-63792.     学报), 2008, 21(2): 59-62, 67.
            [20]  DONG Z Y, FERNANDEZ R D, KUHN S. Acoustophoretic focusing   [37]  HUANG J (黄金), ZHANG K (张凯), YU J (于杰), et al. Preparation
                 effects on particle synthesis and clogging in microreactors [J]. Lab on   and characterization of 2,2′-methylene-bis(4-tert-butylphenyl) phosphate
                 a Chip, 2019, 19(2): 316-327.                     chloride[J]. China Plastics Industry (塑料工业), 2014, 42(9): 84-87.
            [21]  MAO M M (茅梦梅), WAN  L (万力), XIN Z (辛忠). Highly   [38]  WANG L, PAN Y Z, FENG K C, et al. The new synthetic method of
                 efficient synthesis  of antioxidant 168 in continuous flow[J]. Fine   sodium 2,2′-methylene-bis (4, 6-di-t-butylphenyl) phosphate[J]. Acta
                 Chemicals (精细化工), 2019, 36(10): 2151-2154.        Scientiarum Naturalium Universitatis  Sunyatseni  (中山大学学报:
            [22]  YAO H L, WAN L, ZHAO X Y, et al. Effective phosphorylation of 2,   自然科学版), 2007, 46(1): 136-138.
                 2′-methylene-bis(4,6-di-tert-butyl) phenol in  continuous flow reactors   [39]  LEVENSPIEL O.  Chemical reaction  engineering[M]. New  York:
                 [J]. Organic Process Research & Development, 2021, 25(9): 2060-   Wiley-VCH, 1999.
   225   226   227   228   229   230   231   232   233   234   235