Page 230 - 《精细化工》2022年第6期
P. 230
·1296· 精细化工 FINE CHEMICALS 第 39 卷
supported on zeolite via the impregnation on the crystallization 2070.
ability of isotactic polypropylene and its mechanism[J]. Polymers for [23] HARVEY A P, MACKLEY M R, STONESTREET P. Operation and
Advanced Technologies, 2019, 30(11): 2674-2685. optimization of an oscillatory flow continuous reactor[J]. Industrial
[4] SVARA J. An easy preparation of pure cyclic diaryl phosphate: & Engineering Chemistry Research, 2001, 40(23): 5371-5377.
CA2030179[P]. 1991-06-10. [24] LEY S V, FITZPATRICK D E, MYERS R M, et al. Machine-assisted
[5] TAJIMA K, TAKAHASHI M. Diaryl phosphate metal salts: organic synthesis[J]. Angewandte Chemie-International Edition,
JP61210090[P]. 1986-09-18. 2015, 54(35): 10122-10136.
[6] XIN Z (辛忠), WAN L (万力), YAO H L (姚翰林), et al. A [25] POMBERGER A, MO Y M, NANDIWALE K Y, et al. A continuous
continuous preparation method for substituted diaryl phosphate stirred-tank reactor (CSTR) cascade for handling solid-containing
compounds: CN202010644937. 8[P]. 2020-07-06. photochemical reactions[J]. Organic Process Research & Development,
[7] XIN Z (辛忠). Process for one-stage synthesizing substituted diaryl 2019, 23(12): 2699-2706.
organic metal phosphate: CN1358728A[P]. 2002-07-17. [26] CRUZ P C, SILVA C R, ROCHA F A, et al. Mixing performance of
[8] GONG X H (龚小红), HUANG Y G (黄艳刚), YUE D J (乐道进). planar oscillatory flow reactors with liquid solutions and solid
New preparation process of 2, 2′-methylene-bis (4, 6-di-tert-butylphenol) suspensions[J]. Industrial & Engineering Chemistry Research, 2021,
phosphate[J]. Chemistry & Bioengineering (化学与生物工程), 2012, 60(6): 2663-2676.
29(2): 62-63, 76. [27] HARTMAN R L, NABER J R, ZABORENKO N, et al. Overcoming
[9] BAI R (白瑞), LIU D S (刘定胜). Preparation of fluorescent polymer the challenges of solid bridging and constriction during Pd-catalyzed
nanoparticles based on capillary array microreactor[J]. Fine Chemicals C—N bond formation in microreactors[J]. Organic Process Research
(精细化工), 2021, 38(11): 2227-2232. & Development, 2010, 14(6): 1347-1357.
[10] LIU J W (刘建武), ZHANG Y (张跃). Continuous flow process for [28] NOEL T, NABER J R, HARTMAN R L, et al. Palladium-catalyzed
ammoximation of acetone in liquid phase[J]. Fine Chemicals (精细 amination reactions in flow: Overcoming the challenges of clogging
化工), 2021, 38(5): 1074-1080. via acoustic irradiation[J]. Chemical Science, 2011, 2(2): 287-290.
[11] ADAMO A, BEINGESSNER R L, BEHNAM M, et al. On-demand [29] KUHN S, NOEL T, GU L, et al. A teflon microreactor with
continuous-flow production of pharmaceuticals in a compact, integrated piezoelectric actuator to handle solid forming reactions[J].
reconfigurable system[J]. Science, 2016, 352(6281): 61-67. Lab on a Chip, 2011, 11(15): 2488-2492.
[12] WANG K, LUO G S. Microflow extraction: A review of recent [30] GHANEM A, LEMENAND T, DELLA V D, et al. Static mixers:
development[J]. Chemical Engineering Science, 2017, 169(21): 18-33. Mechanisms, applications, and characterization methods-A review[J].
[13] MAO M M, ZHANG L, YAO H L, et al. Development and scale-up Chemical Engineering Research & Design, 2014, 92(2): 205-228.
of the rapid synthesis of triphenyl phosphites in continuous flow[J]. [31] MENG H B, HAN M Q, YU Y F, et al. Numerical evaluations on the
Acs Omega, 2020, 5(16): 9503-9509. characteristics of turbulent flow and heat transfer in the lightnin static
[14] YAO C Q, ZHAO Y C, CHEN G W. Multiphase processes with ionic mixer[J]. International Journal of Heat and Mass Transfer, 2020,
liquids in microreactors: Hydrodynamics, mass transfer and 156(2020): 119788.
applications [J]. Chemical Engineering Science, 2018, 189(2): [32] DONG Y C, NG W K, HU J, et al. A continuous and highly effective
340-359. static mixing process for antisolvent precipitation of nanoparticles of
[15] ONISURU O R, ALIMI O A, POTGIETER K, et al. Continuous- poorly water-soluble drugs[J]. International Journal of Pharmaceutics,
flow catalytic degradation of hexacyanoferrate ion through electron 2010, 386(1/2): 256-261.
transfer induction in a 3D-printed flow reactor[J]. Journal of [33] VAN WAGENINGEN W F C, MUDDE R F, VAN DEN AKKER H
Materials Engineering and Performance, 2021, 30(7): 4891-4901. E A. Numerical simulation of growing Cu particles in a Kenics static
2+
[16] COLEY C W, THOMAS D A Ⅲ, LUMMISS J A M, et al. A robotic mixer reactor in which Cu is reduced by carbohydrates[J].
platform for flow synthesis of organic compounds informed by AI Chemical Engineering Science, 2004, 59(22/23): 5193-5200.
planning[J]. Science, 2019, 365(6453): eaax1566. [34] GOBERT S R L, KUHN S, BRAEKEN L, et al. Characterization of
[17] BO X F (薄晓帆), WAN L (万力), XIN Z (辛忠). Sol-gel prepared milli- and microflow reactors: Mixing efficiency and residence time
mesoporous Pd/m-TiO 2 for continuous-flow Suzuki coupling reaction distribution[J]. Organic Process Research & Development, 2017,
[J]. Fine Chemicals (精细化工), 2021, 38(8): 1613-1620. 21(4): 531-542.
[18] POMMELLA A, TOMAIUOLO G, CHARTOIRE A, et al. Palladium- [35] JIN D (金丹), FU H L (付海玲), WU J H (吴剑华), et al. Analysis
N-heterocyclic carbene (NHC) catalyzed C-N bond formation in a for the effect of factors on residence time distribution in kenics static
continuous flow microreactor. Effect of process parameters and mixer[J]. Journal of Petrochemical Universities (石油化工高等学校
comparison with batch operation[J]. Chemical Engineering Journal, 学报), 2011, 24(3): 70-74.
2013, 223(1): 578-583. [36] MENG H B (孟辉波), WU J H (吴剑华), YU Y F (禹言芳).
[19] PERAZZO A, TOMAIUOLO G, SICIGNANO L, et al. A microfluidic Numerical simulation of residence time distribution in Kenics static
approach for flexible and efficient operation of a cross-coupling mixer[J]. Journal of Petrochemical Universities (石油化工高等学校
reactive flow[J]. RSC Advances, 2015, 5(78): 63786-63792. 学报), 2008, 21(2): 59-62, 67.
[20] DONG Z Y, FERNANDEZ R D, KUHN S. Acoustophoretic focusing [37] HUANG J (黄金), ZHANG K (张凯), YU J (于杰), et al. Preparation
effects on particle synthesis and clogging in microreactors [J]. Lab on and characterization of 2,2′-methylene-bis(4-tert-butylphenyl) phosphate
a Chip, 2019, 19(2): 316-327. chloride[J]. China Plastics Industry (塑料工业), 2014, 42(9): 84-87.
[21] MAO M M (茅梦梅), WAN L (万力), XIN Z (辛忠). Highly [38] WANG L, PAN Y Z, FENG K C, et al. The new synthetic method of
efficient synthesis of antioxidant 168 in continuous flow[J]. Fine sodium 2,2′-methylene-bis (4, 6-di-t-butylphenyl) phosphate[J]. Acta
Chemicals (精细化工), 2019, 36(10): 2151-2154. Scientiarum Naturalium Universitatis Sunyatseni (中山大学学报:
[22] YAO H L, WAN L, ZHAO X Y, et al. Effective phosphorylation of 2, 自然科学版), 2007, 46(1): 136-138.
2′-methylene-bis(4,6-di-tert-butyl) phenol in continuous flow reactors [39] LEVENSPIEL O. Chemical reaction engineering[M]. New York:
[J]. Organic Process Research & Development, 2021, 25(9): 2060- Wiley-VCH, 1999.