Page 65 - 《精细化工》2022年第7期
P. 65
第 7 期 方 健,等: 2H-MoS 2 定向调控生成 1T-MoS 2 及应用 ·1351·
MoS 2 nanosheets[J]. Journal of the American Chemical Society, their derivatives for electrocatalytic water splitting[J]. CIESC Journal
2013, 135(28): 10274-10277. (化工学报), 2020, 71(9): 4006-4030.
[38] ENYASHIN A N, SEIFERT G. Density-functional study of Li xMoS 2 [57] ZHANG W C, LIAO X B, PAN X L, et al. Superior hydrogen
intercalates (0 x 1)[J]. Computational and Theoretical Chemistry, evolution reaction performance in 2H-MoS 2 to that of 1T phase[J].
2012, 999: 13-20. Small, 2019, 15(31): 1900964.
[39] XIAO J, CHOI D, COSIMBESCU L, et al. Exfoliated MoS 2 [58] WANG H T, LU Z Y, KONG D S, et al. Electrochemical tuning of
nanocomposite as an anode material for lithium ion batteries[J]. MoS 2 nanoparticles on three-dimensional substrate for efficient
Chemistry of Materials, 2010, 22(16): 4522-4524. hydrogen evolution[J]. ACS Nano, 2014, 8(5): 4940-4947.
[40] MORTAZAVI M, WANG C, DENG J K, et al. Ab initio [59] YANG J, WANG K, ZHU J, et al. Self-templated growth of vertically
characterization of layered MoS 2 as anode for sodium-ion aligned 2H-1T MoS 2 for efficient electrocatalytic hydrogen
batteries[J]. Journal of Power Sources, 2014, 268: 279-286. evolution[J]. ACS Applied Materials & Interfaces, 2016, 8(46):
[41] GAO P, WANG L P, ZHANG Y Y, et al. Atomic-scale probing of the 31702-31708.
dynamics of sodium transport and intercalation induced phase [60] YIN Y, HAN J, ZHANG Y, et al. Contributions of phase, sulfur
transformations in MoS 2[J]. ACS Nano, 2015, 9(11): 11296-11301. vacancies, and edges to the hydrogen evolution reaction catalytic
[42] LI Q Q, YAO Z P, WU J S, et al. Intermediate phases in sodium activity of porous molybdenum disulfide nanosheets[J]. Journal of
intercalation into MoS 2 nanosheets and their implications for the American Chemical Society, 2016, 138(25): 7965-7972.
sodium-ion batteries[J]. Nano Energy, 2017, 38: 342-349. [61] RAM S, DUSAN T, DUSAN S, et al. Enhancing hydrogen evolution
+
[43] CAI L, HE J, LIU Q, et al. Vacancy-induced ferromagnetism of activity in water splitting by tailoring Li -Ni(OH) 2-Pt interfaces[J].
MoS 2 nanosheets[J]. Journal of the American Chemical Society, Science, 2011, 334: 1256-1260.
2015, 137(7): 2622-2627. [62] ZHANG X, LIANG Y, NICKEL Y. Hydr(oxy)oxide nanoparticles on
[44] CAI L, CHENG W, YAO T, et al. High-content metallic 1T phase in metallic MoS 2 nanosheets: A synergistic electrocatalyst for hydrogen
MoS 2-based electrocatalyst for efficient hydrogen evolution[J]. The evolution reaction[J]. Advanced Science, 2018, 5(2): 1700644.
Journal of Physical Chemistry C, 2017, 121(28): 15071-15077. [63] XIANG T, FANG Q, XIE H, et al. Vertical 1T-MoS 2 nanosheets with
[45] YANG C Y, CHIU K C, CHANG S J, et al. Phase-driven magneto- expanded interlayer spacing edged on a graphene frame for high rate
electrical characteristics of single-layer MoS 2[J]. Nanoscale, 2016, lithium-ion batteries[J]. Nanoscale, 2017, 9(21): 6975-6983.
8(10): 5627-5633. [64] LU J, XIA G L, GONG S P, et al. Metallic 1T phase MoS 2
[46] KANG Y, NAJMAEI S, LIU Z, et al. Plasmonic hot electron induced nanosheets decorated hollow cobalt sulfide polyhedra for
structural phase transition in a MoS 2 monolayer[J]. Advanced high-performance lithium storage[J]. Journal of Materials Chemistry
Materials, 2014, 26(37): 6467-6471. A, 2018, 6(26): 12613-12622.
[47] CONLEY H J, WANG B, ZIEGLER J I, et al. Bandgap engineering [65] ZHANG Y Z (张毅舟), WU X H (吴籼虹), WANG Z Y (王治宇),
of strained monolayer and bilayer MoS 2[J]. Nano Letters, 2013, et al. Biomass-derived B/N co-doped carbon nanosheets decorated
13(8): 3626-3630. with single-layered MoS 2 for sodium storage[J]. CIESC Journal (化
[48] ZHOU Y G, WANG Z G, YANG P, et al. Tensile strain switched 工学报), 2021, 72(12): 6371-6379.
ferromagnetism in layered NbS 2 and NbSe 2[J]. ACS Nano, 2012, [66] GENG X M, JIAO Y C, HAN Y, et al. Freestanding metallic 1T
6(11): 9727-9736. MoS 2 with dual ion diffusion paths as high rate anode for sodium-ion
[49] ZHANG X O, LI Q F. Strain-induced magnetism in ReS 2 monolayer batteries[J]. Advanced Functional Materials, 2017, 27(40): 1702998.
with defects[J]. Chinese Physics B, 2016, 25(11): 117103. [67] LI Y F, LIANG Y L, ROBLES H, et al. Enhancing sodium-ion
[50] SONG S, KEUM D H, CHO S, et al. Room temperature battery performance with interlayer-expanded MoS 2-PEO
semiconductor-metal transition of MoTe 2 thin films engineered by nanocomposites[J]. Nano Energy, 2015, 15: 453-461.
strain[J]. Nano Letters, 2016, 16(1): 188-193. [68] XU C X (徐晨曦), HU A J (胡安俊), SHU C Z (舒朝著), et al.
[51] HWANG D Y, CHIO K H, PARK J E, et al. Highly efficient Application progress of metallic phase of molybdenum disulfide for
hydrogen evolution reaction by strain and phase engineering in energy storage and conversion[J]. Journal of Materials Engineering
composites of Pt and MoS 2 nano-scrolls[J]. Physical Chemistry (材料导报), 2020, 48(9): 34-46.
Chemical Physics, 2017, 19(28): 18356-18365. [69] SUN B T, LIANG Z Q, QIAN Y Y, et al. Sulfur vacancy-rich
[52] ZHANG P, GAO C, XU B, et al. Structural phase transition effect on O-doped 1T-MoS 2 nanosheets for exceptional photocatalytic nitrogen
resistive switching behavior of MoS 2-polyvinylpyrrolidone fixation over CdS[J]. ACS Applied Materials & Interfaces, 2020, 12:
nanocomposites films for flexible memory devices[J]. Small, 2016, 7257-7269.
12(15): 2077-2084. [70] CHEN M G, SUN T, ZHAO W, et al. In situ growth of metallic
[53] WANG T L, SUN C L, YANG M Z, et al. Phase-transformation 1T-MoS 2 on TiO 2 nanotubes with improved photocatalytic
engineering in MoS 2 on carbon cloth as flexible binder-free anode for performance[J]. ACS Omega, 2021, 6: 12787-12793.
enhancing lithium storage[J]. Journal of Alloys and Compounds, [71] CORDOVA A, BLANCHARD P, LANCELOT C, et al. Probing the
2017, 716: 112-118. nature of the active phase of molybdenum-supported catalysts for the
[54] ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS 2 direct synthesis of methylmercaptan from syngas and H 2S[J]. ACS
nanosheets as supercapacitor electrode materials[J]. Nature Catalysis, 2015, 5(5): 2966-2981.
Nanotechnology, 2015, 10(4): 313-318. [72] LU J C, LUO Y M, HE D D, et al. An exploration into potassium (K)
[55] BENSON E E, ZHANG H, SCHUMAN S A, et al. Balancing the containing MoS 2 active phases and its transformation process over
hydrogen evolution reaction, surface energetics, and stability of MoS 2 based materials for producing methanethiol[J]. Catalysis
metallic MoS 2 nanosheets via covalent functionalization[J]. Journal Today, 2020, 339: 93-104.
of the American Chemical Society, 2018, 140(1): 441-450. [73] YU M, KOSINOV N, VAN H L, et al. Investigation of the active
[56] MA J H (马佳欢), BAI Y (白羽), YANG W W (杨微微), et al. phase in K-promoted MoS 2 catalysts for methanethiol synthesis[J].
Research progress of two-dimensional metal organic frameworks and ACS Catalysis, 2020: 10(3), 1838-1846.