Page 99 - 《精细化工》2022年第7期
P. 99
第 7 期 卢健康,等: 膨润土/羧甲基纤维素钠水凝胶的制备及其应用 ·1385·
从 0 g 增加到 0.30 g,固定化 Cr(Ⅲ)的含量从 60.6% [4] WANG X G, LYU S Y, GAO C M, et al. Recovery of ammonium and
phosphate from wastewater by wheat straw-based amphoteric
增加到 82.9%。研究发现,SRFs(BT-g-CMC1.0)
adsorbent and reusing as a multifunctional slow-release compound
能增强土壤中 Cr(Ⅲ)的吸附,这主要是 SRFs(BT-g- fertilizer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4):
CMC1.0)表面的负电荷与 Cr(Ⅲ)之间存在静电相互 2068-2079.
[5] ALMANASSRA W I, KOCHKODAN V, MCKAY G, et al. Review
作用。另外,SRFs(BT-g-CMC1.0)中的羟基、甲 of phosphate removal from water by carbonaceous sorbents[J]. J
氧基和羧基可以与金属离子螯合,提高了 Cr(Ⅲ)的 Environ Manage, 2021, 287: 112245.
[6] BAULI C R, LIMA G F, SOUZA A G D, et al. Eco-friendly
固定能力。
carboxymethyl cellulose hydrogels filled with nanocellulose or
nanoclays for agriculture applications as soil conditioning and nutrient
3 结论 carrier and their impact on cucumber growing[J]. Colloids and Surfaces
A: Physicochemical and Engineering Aspects, 2021, 623: 126771.
通过 FTIR、XRD、SEM 对材料的微观结构和 [7] OLAD A, ZEBHI H, SALARI D, et al. Synthesis, characterization,
and swelling kinetic study of porous superabsorbent hydrogel
官能团进行了分析。BT-g-CMC 水凝胶中的羟基和 nanocomposite based on sulfonated carboxymethylcellulose and silica
酯基等含氧官能团数量增加使结晶度相对降低,其 nanoparticles[J]. Journal of Porous Materials, 2018, 25(5): 1325-1335.
[8] RESENDE R F, SILVA T F B, SANTOS N A V, et al. Anionic
表面结构也有明显的变化,由 BT 致密平坦的表面
collector adsorption onto bentonites and potential applications in the
–
变得粗糙松散。此外,BT-g-CMC1.0 水凝胶对 H 2 PO 4 treatment of mining wastewater[J]. Colloids and Surfaces A:
的吸附涉及氢键、配体交换、表面沉淀和内层配位。 Physicochemical and Engineering Aspects, 2021, 629: 127401.
[9] FERTAHI S, ILSOUK M, ZEROUAL Y, et al. Recent trends in
动力学结果表明,吸附过程受化学吸附控制; organic coating based on biopolymers and biomass for controlled and
吸附实验结果表明,在 pH=6、BT-g-CMC1.0 用量为 slow release fertilizers[J]. Journal of Controlled Release, 2021, 330:
341-361.
0.05 g、吸附时间为 120 min 条件下,BT-g-CMC1.0
[10] GUO L Z, WANG Y Q, WANG M, et al. Synthesis of bio-based
–
对 H 2 PO 4 的最大吸附量为 34.12 mg/g。 MIL-100(Fe)@CNF-SA composite hydrogel and its application in
含有质量分数为 1%和 2% SRFs(BT-g-CMC1.0) slow-release N-fertilizer[J]. Journal of Cleaner Production, 2021,
324: 129274.
的土壤在 30 d 后的保水率分别为 11.23%和 25.24%; [11] YAN H Y, ZHU X H, DAI F L, et al. Porous geopolymer based
含有 1.0 g SRFs(BT-g-CMC1.0)的土壤(100 g) eco-friendly multifunctional slow-release fertilizers for promoting
plant growth[J]. Colloids and Surfaces A: Physicochemical and
在第 3、第 15 和第 30 d 的累积释放率分别为 5.08%、 Engineering Aspects, 2021, 631: 127646.
37.68%和 51.87%。 [12] LI Y Y, FU F L, CAI W T, et al. Synergistic effect of mesoporous
SRFs(BT-g-CMC1.0)处理的大白菜的根、茎 feroxyhyte nanoparticles and Fe(Ⅱ) on phosphate immobilization:
Adsorption and chemical precipitation[J]. Powder Technology, 2019,
高度和干、湿重比 KH 2 PO 4 和 CK 处理的两组大白菜 345: 786-795.
分别增加了 32.93%、14.04%、26.11%、22.40%和 [13] OLAD A, ZEBHI H, SALARI D, et al. Slow-release NPK fertilizer
encapsulated by carboxymethyl cellulose-based nanocomposite with
59.12%、35.42%、52.81%、72.60%。 the function of water retention in soil[J]. Materials Science and
浸出次数为 3 次,当 SRFs(BT-g-CMC1.0)的 Engineering: C, 2018, 90: 333-340.
[14] XI H, LI Q Q, YANG Y, et al. Highly effective removal of phosphate
剂量从 0 g 增加到 0.30 g 时,土壤中被固定化的
from complex water environment with porous Zr-bentonite alginate
Cr(Ⅲ)含量从 60.6%增加到 82.9%。 hydrogel beads: Facile synthesis and adsorption behavior study[J].
在之前的报道中,往往只考虑对吸附剂的简单 Applied Clay Science, 2021, 201: 105919.
[15] JIAO G J, MA J L, LI Y C, et al. Enhanced adsorption activity for
重复使用而没有考虑吸附质的再利用。BT-g-CMC1.0 phosphate removal by functional lignin-derived carbon-based adsorbent:
–
作为一种无毒害吸附剂,在回收 H 2 PO 4 后作为 SRFs Optimization, performance and evaluation[J]. Science of the Total
Environment, 2021, 761: 143217.
(BT-g-CMC1.0)可进一步应用在农业领域,在解
[16] XI H, JIANG H L, ZHAO D, et al. Highly selective adsorption of
决水体污染的同时也可以作为工业磷肥的补充。为 phosphate from high-salinity water environment using MgO-loaded
治理水体富营养化提供了新的方向。 and sodium alginate-immobilized bentonite beads[J]. Journal of Cleaner
Production, 2021, 313: 127773.
[17] CUI G R, LIU M, CHEN Y, et al. Synthesis of a ferric hydroxide-
参考文献:
coated cellulose nanofiber hybrid for effective removal of phosphate
[1] DENG W D, ZHANG D Q, ZHENG X X, et al. Adsorption recovery from wastewater[J]. Carbohydrate Polymers, 2016, 154: 40-47.
of phosphate from waste streams by Ca/Mg-biochar synthesis from [18] WANG B, ZHANG W, LI L, et al. Novel talc encapsulated
marble waste, calcium-rich sepiolite and bagasse[J]. Journal of Cleaner lanthanum alginate hydrogel for efficient phosphate adsorption and
Production, 2021, 288: 125638. fixation[J]. Chemosphere, 2020, 256: 127124.
[2] WANG B, MA Y N, LEE X Q, et al. Environmental-friendly coal [19] WANG W S, YANG S Q, ZHANG A P, et al. Synthesis of a slow-
gangue-biochar composites reclaiming phosphate from water as a release fertilizer composite derived from waste straw that improves
slow-release fertilizer[J]. Science of the Total Environment, 2021, water retention and agricultural yield[J]. Science of the Total
758: 143664. Environment, 2021, 768: 144978.
[3] ZHENG Q, YANG L F, SONG D L, et al. High adsorption capacity of [20] LI T, LYU S Y, ZHANG S F, et al. Lignin-based multifunctional
Mg-Al-modified biochar for phosphate and its potential for phosphate fertilizer for immobilization of Pb(Ⅱ) in contaminated soil[J]. Journal
interception in soil[J]. Chemosphere, 2020, 259: 127469. of the Taiwan Institute of Chemical Engineers, 2018, 91: 643-652.